Pathologic Gait

Joseph E. Burris, MD Professor of Clinical PM&R University of Missouri

Overview: etiology of pathologic gait deviations

- Compensation of gait:
 - Muscle weakness
 - Pain
 - Soft tissue injury
 - Bony injury
 - Neurologic dysfunction

History and Physical Exam

- History
 - Congenital
 - Acquired
 - Degenerative
- Examination
 - Musculoskeletal
 - ROM
 - Joint
 - Soft tissue
 - Muscle
 - Connective tissue
 - Bone

- Neurologic
 - General
 - Focal
 - Paralysis
 - Spastic
 - Flaccid
 - Sensation
 - Pain
 - Light touch
 - Proprioception
 - Balance
 - Central
 - Vestibular
 - Visual

Motor Control

- Recruitment
 - Timing
 - Quantity
- "Derecruitment"
 - Timing
 - Quantity

VINDSHOLOGY AND FUNCTIONAL CHARACTERISTICS OF THE LOWER LIMB 269

- 1	WALKING	١) ·	/ /)	>	
- 1		ST	ANCE PHA	SE.	· · ·	SWING P	IASE	
_	MUSCLES) 15	% 30	% 45	% 60	2%		100
SHOCK ABSORPTION	WASTUS INTERMEDIUS				٠			
	- VARIANALIS							
	2 VASTUS MEDIALIS						^	
	a MCCTUS FEMORIS						_i	
TORSO BALANCE	S GLUTEUS MAXIMUS	27			J			
	6 GLUTEUS MEDIUS						>	
	GLUTEUS						>	
	* TENSOR FASCIAE						5	
	9 ERECTOR SPINAL				\wedge		- <u>¥</u> ~-	
PUSH OFF	IN PLEXOR						Ä.	
	11 FLEXOR	_					E	
	12 GASTROCHEMUS				_			
	I PERONEUS	-					—æ-—	
	I PERONEUS		-K				- 10	
	is soleys				\sim		z	
					_		+-	_
	10 POSTERIOR		<u>-</u> -		\rightarrow		+-	
ACCELERATION	17 ADDUCTOR LISHGUS		<u> </u>				<u> </u>	$\overline{}$
	in Manus		-É			-		$\overline{}$
	19 (LEO PSOAS)		4		_		\sim	
	20 SARTORIUS		Z-					
FOOT DORSIFLEX	21 DIGITORUM LONGUS		≥_		ب			_
	PZ EXTENSOR HALLUCIS LONGUS		¥					
	23 ANYERIOR	1	- H			$\overline{}$	$\overline{}$	
DECELERATION	24 GRACILIS	١٠٠,	μ					
	29 MEMBRANOSUS		9					
	26 SEMITENDINGSUS	1.	T					
	27 BICEPS FEMORIS							
	28 SHORT HEADS	_	1.1.			1		

Fig. 18-8. Electromyograph of lower limb during walking. (Courtesy Dr. Charles O. Bechtol, Los Angeles, Calif.)

Other Factors

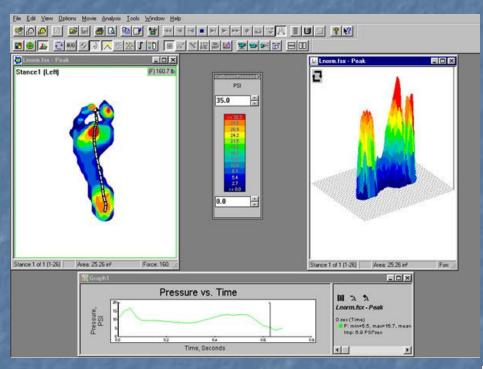
- Cardiac
- Pulmonary
- Fatigue

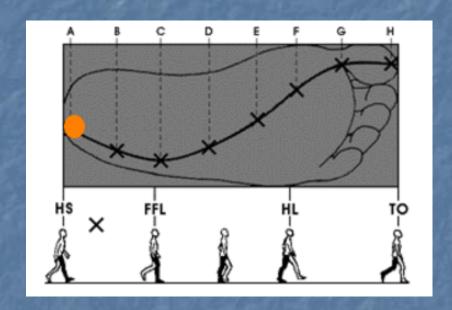
Gait Analysis

- Kinematics
 - Temporal and spatial joint/limb movement
- Qualitative
 - Observational gait analysis
- Quantitative

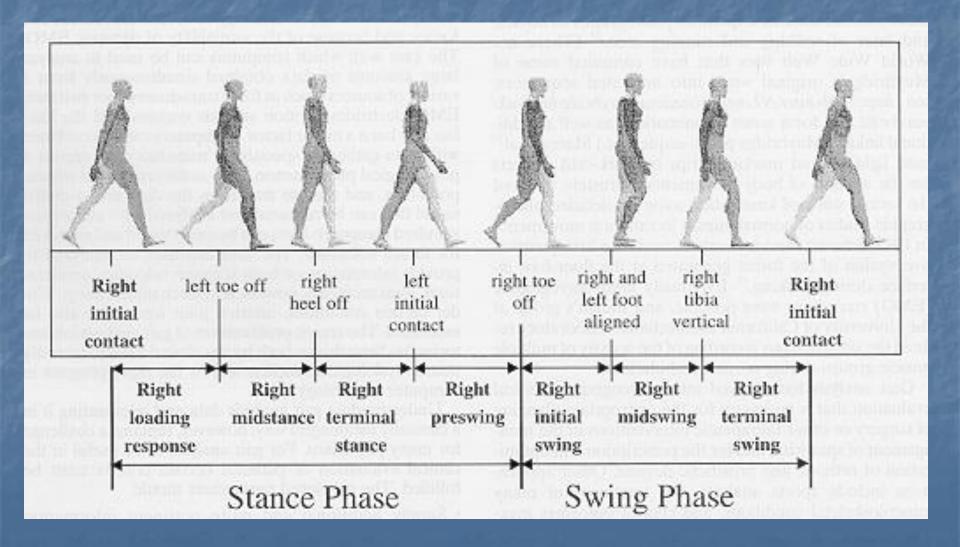
https://www.youtube. com/watch?v=-WnLCyJBwo&feature=playe r embedded

Gait Analysis


Kinetics


Forces/torques that produce joint/limb movement


Summary of Pressures during Stance Phase



Normal Gait

Normal Gait

Hip ROM during normal gait cycle

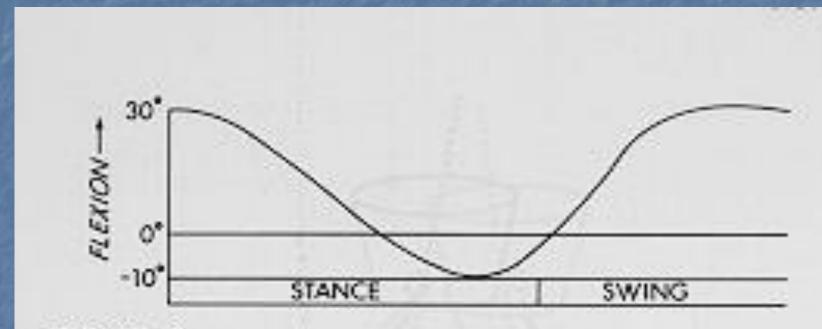


FIG 13-8.

Hip motion involves only 1 arc of flexion and 1 arc of extension. (Adapted from Perry J: Clin Orthop 1974; 102:18.)

Knee ROM during normal gait cycle

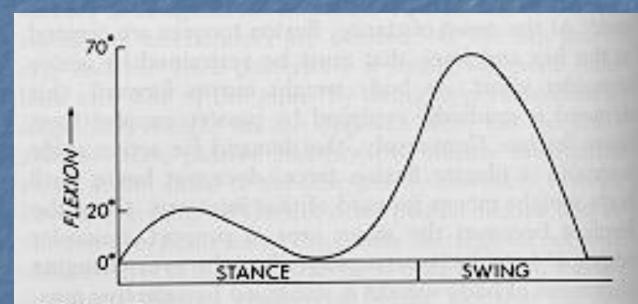


FIG 13-7.

The knee attains 35 degrees of flexion by the end of stance. Peak flexion is reached in the first third of swing while the limb is in a trailing position. (Adapted from Perry J: Clin Orthop 1974; 102:18.)

Ankle ROM during normal gait cycle

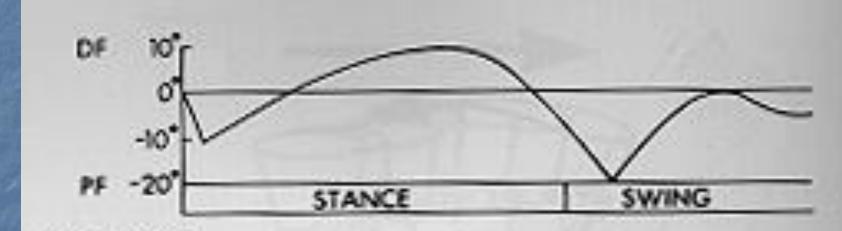


FIG 13-6.

Ankle motion during the gait cycle ranges from 10 degrees of dorsiflexion to 20 degrees of plantar flexion. (Adapted from Perry J: Clin Orthop 1974; 102:18.)

Ankle dorsiflexor weakness/paralysis

- Loading phase "foot slap"
- Footdrop (toe drag) in swing phase
- Excessive swing phase hip/knee flexion

Ex. Fibular (peroneal) nerve palsy affecting anterior tibialis function

Ankle plantarflexor weakness/paralysis

- Uncontrolled ankle rotation during loading response to midstance
- Uncontrolled heel and toe off in terminal stance and preswing
- Loss of "propulsion" with an appearance of dropoff in latter stance phase
- Ex. Tibial nerve palsy affects gastrosoleus function

Quadriceps weakness/paralysis

- Affects all phases of gait
- Knee extension at initial contact
- 15-20 degrees knee flexion at midstance--loss of control of knee flexion in loading phase
- Loss of knee extension at terminal stance
- Loss of knee extension at terminal swing
- Ex. Femoral neuropathy

Hamstrings weakness/paralysis

- Uncontrolled knee extension and hip flexion terminal swing
- Uncontrolled swing phase limb deceleration loss of eccentric hamstrings contraction
- Harsh initial contact
- Difficulty placing the swing limb for initial contact
- Ex. Sciatic neuropathy

Hip extensor weakness/paralysis

- Gluteus maximus—loss of eccentric hip extension control in loading response
- Sudden posterior thrust of trunk after initial contact

Ex. Inferior gluteal nerve palsy

Hip flexor weakness/paralysis

Iliopsoas—loss of hip flexion in early swing phase

Ex. Femoral neuropathy, lumbosacral plexopathy

Hip abductor weakness/paralysis

 Gluteus medius—"dropping" of the pelvis on the affected side in loading and midstance, resulting in trendelenburg gait

Ex. Superior gluteal neuropathy, myopathy

Ataxia

- Impaired balance
- Lack of motor coordination
- Widened base of support
- Variable step length
- Associated movements are exaggerated (lurch, stagger)
- Watches feet
- Ex. Brainstem CVA, olivopontocerebellar atrophy, Friedreich's ataxia

Parkinsons/Parkinsonism

- Poor posture
- Short step length
- Shuffling
- Lack of associated movements (reciprocating)
- Festination

Ex. Parkinsons disease

Hemiplegia

- Synergy
- Upper limb flexor
- Lower limb extensor
- Ex. CVA, TBI, MS, CP

- Spasticity
- Velocity-dependent increase in resistance to muscle stretch after upper motor neuron injury
- Spastic dystonia

Hemiplegia Upper extremity flexion synergy

- Scapular retraction and depression
- Shoulder internal rotation
- Shoulder adduction
- Forearm pronation
- Elbow flexion
- Wrist flexion
- Finger flexion

Hemiplegia Lower extremity extension synergy

- Pelvic elevation
- Hip extension, adduction, internal rotation
- Knee extension
- Ankle plantarflexion
- Foot inversion
- Toe plantarflexion
- Hallux extension

Hemiplegia

- Stance phase:
- "slap"/equinovarus
- Knee flexion/extension
- Trendelenburg/extension
- Hip flexion/extension
- Toe drop off/clenching

- Swing phase:
- Adductor swing
- Circumduction
- Toe drag
- Sound limb vaulting

Equinus

- Ankle plantarflexion inversion spasticity
- Stance phase
 - Initial contact midfoot/forefoot
 - Weight bearing shifted laterally
- Swing phase
 - Toe drag
- Ex. CVA, TBI, MS, CP

Scissor

- Hip adductor spasticity
- Narrowed base of support
- Knee crosses midline--stance and swing

Ex. Cerebral palsy

Antalgia

Deviation dependent on pain location and severity

Affected side—decreased stance phase

Non-affected side—decreased step length

Antalgia

- Joint/bone:
 - Arthritis
 - Fracture
- Soft tissue injury
 - Bursitis
 - Tendonitis
 - Sprain/strain
 - Overuse
 - DOMS

