The Limb Deficient Child

Heikki Uustal, M.D. Medical Director, Prosthetic/Orthotic Team JFK - Johnson Rehab Institute

Classification

- Frantz-O'Rahilly / ISPO
 Complete/partial absence of bone segments
 Transverse deficiency (no distal segments)
 Longitudinal deficiency (some distal
- segments)
- Difficult to classify over/undergrowth, duplication and congenital bands

3

Congenital Limb Deficiency

Incidence 4.1- 6.3/10,000 births Congenital : Acquired - 60:40 Upper : Lower - 2:1 30% multiple limbs Male : Female - 1.8:1 Seldom have associated diseases Usually normal intelligence

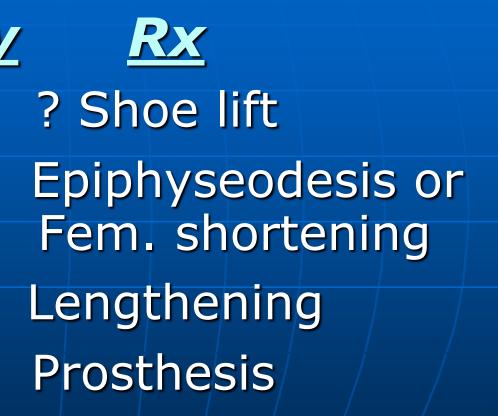
Genetic Considerations

- Most transverse defects have no genetic risks
- Tibial defects have the highest risk (30%)
 Renal defects associated with lower extremity deficiency
 Scoliosis (18%) and cardiac defects linked with upper extremity deficiency

Congenital

Radial deficiency (most common)
Fibular deficiency
Tibial deficiency
Femur deficiency
Multi-limb deficiency (least common)

Can it happen again ?


∎ 1-3% chance (Slightly higher than normal) Some genetic associations (Tibial deficiency, Ulnar-femoral syndrome)

Decision Making

Severity of deficiency Estimate limb length at maturity Amputation, lengthening, bracing ? Timing of intervention (age of child) Psycho-social assessment Available expertise and finances

Management

LLD at Maturity < 2 cm 2-5 cm 5-20 cm > 20 cm

Syme's at 1 year

Syme's at 12 years

When to fit Prosthesis ? Match with child's development Upper passive - sit ~ 4-6 mos Activate terminal device ~ 9-18 mos Activate elbow ~ 24-36 mos Lower non-articulated ~ 6-12 mos Lower articulated ~ 24-36 mos

Syme's Amputation Prosthesis

Tibia/Fibula considerations

Fibular Deficiency

Femoral shortening in ~50%
25% are bilateral
Knee / Ankle / Foot anomalies
Anteromedial tibial bow
Equino-valgus foot

Fibular Deficiency Limb lengthening if:

Stable foot with >3 rays
Plantigrade foot
Stable / mobile ankle
Predicted LLD <20 cm
Multidisciplinary team

Fibular Deficiency Conversion Amputation to Syme's

Unstable foot with <3 rays
Unstable / stiff ankle
Predicted LLD >20 cm
Multidisciplinary team

Tibial Deficiency

Jones classification (based on tibial length remaining) Can be genetic Knee flexed and unstable, ankle varus deformity Rx based on severity

Tibial Deficiency Options

Absent tibia = knee disarticulation Fibular centralization Proximal third = tibia-fibula fusion More than a third = syme's Lengthening / reconstruction if foot and ankle are stable

Bilateral Tibial Deficiency

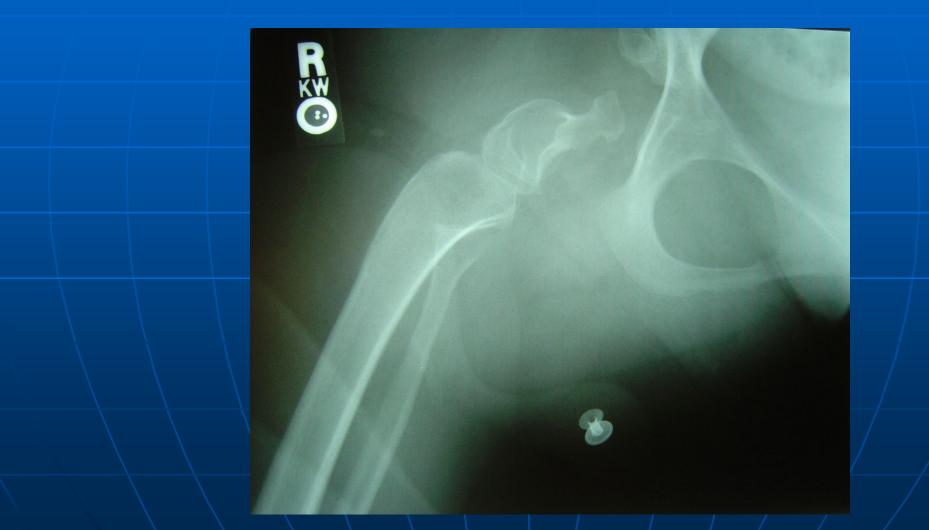
After Bilateral Knee Dis-articulations

Bilateral Congenital Limb Deficiency (video)

Congenital Femur Deficiency

Femur /Acetabulum dysplastic
Hip Flex / Abd / Ext rot.
Hypoplastic lateral condyle
Knee A-P laxity
Fibular hypoplasia (~50%)

Longitudinal Femoral Deficiency Prosthesis

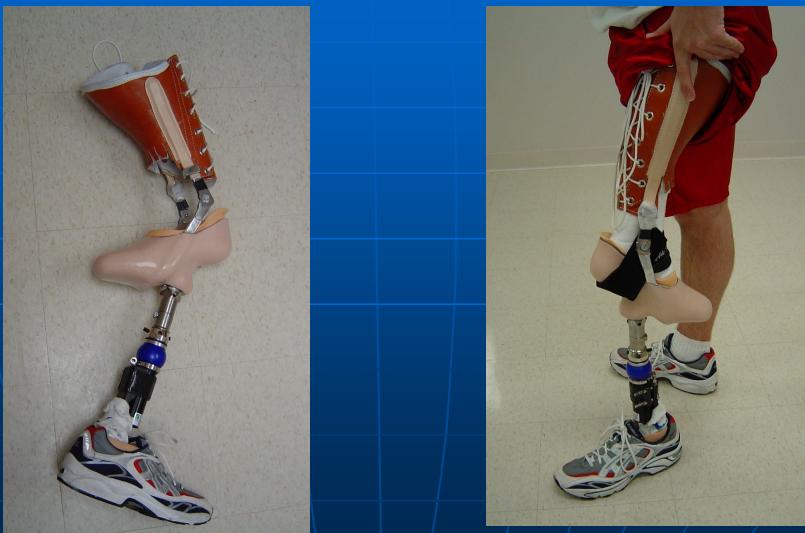


Proximal Focal Femoral Deficiency

PFFD Prosthesis

Congenital Femur Deficiency Prosthetic Fitting

Prosthetic Fitting > 50% deficiency
Knee fusion + ankle disartic = knee disartic
With VanNess Rotationplasty = Modified BKA
Consider limb lengthening < 50% deficiency


Congenital Femur Deficiency Rotationplasty

Need mobile ankle (90 degrees PF)
Gastroc-soleus = "knee extensor"
Ankle at level of opposite knee
Muscle strength 4/5 necessary
Fitted as modified BKA on foot

VanNess Rotationplasty

VanNess Rotationplasty Prosthesis

Walk with Rotationplasty Prosthesis (video)

Partial Hand Deficiency

Partial Hand Deficiency

Radial Deficiency

Transverse/partial deficiency most common
Assess shoulder and elbow mobility
Fit with mitt prosthesis by 6 months
If longitudinal deficiency, consider limb salvage by centralizing wrist on ulna to preserve hand

Transverse Radial Deficiency

Comparison to normal

Transverse radial deficiency

Trans-radial Cable Prosthesis

Humeral Deficiency

- Transverse/partial deficiency most common
- Fit with non-articulated prosthesis by 6 months

Articulate elbow by 36 months
 If longitudinal deficiency, consider limb salvage by lengthening (Illizarov)

Elbow Disarticulation Deficiency

Elbow Disartic Prostheses

Elbow Disartic Hybrid Prosthesis

Elbow Disartic Deficiency with Myo-electric Prosthesis

Kids are different, not disabled

Acquired Amputation

Trauma (most common)
Malignancy
Infection- meningococcus
Vascular
60% in lower extremity

BKA due to vascular injury

Peds Trans-tib prosthesis with thigh corset

Prosthetic Replacement

Replace prosthesis once a year from age 1 to 16 (or when growth stops). Occasionally the foot can be used for 2 years Try to plan for growth into prosthesis (pylon and socket) Frequent modifications are expected

Multi-Limb Deficiency Function with/without prosthesis Keep limbs / spine mobile Preserve feet and hands Adaptations for ADL's Mobility versus "walking"

Multiple-Limb Amputee

(four limb deficiency)

Bilateral Transhumeral and **Trans-femoral** amputations. Where do you start ?

Do you fit prostheses? How do you achieve independent self-care?

Thank You