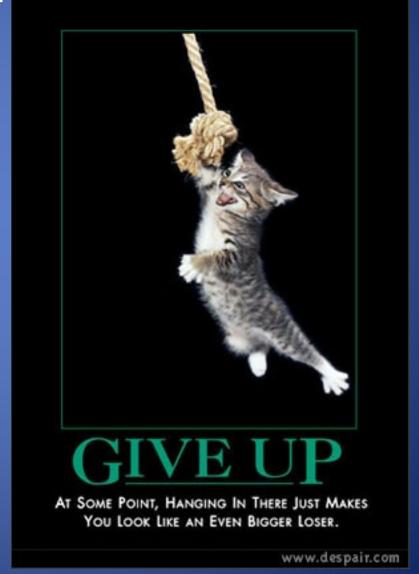
Surgical Considerations in Upper Limb Amputation

Jay T Bridgeman, MD
Assistant Professor
University of Missouri

Disclosures

- Institutional
 - None

- Financial
 - None


Objectives

- Identify the indications for upper extremity amputation
- Understand the principles and goals of upper extremity amputation
- Review specific levels of amputation and important considerations for each
- Review special considerations involving upper extremity reconstruction

Upper Extremity: Purpose

- Prehensile
 - Grip

Nonprehensile

Prehensile

Power Grip

-Ulnar hand

Ring and little fingers

Prehensile

- Precision Grip
 - -Radial side

—Thumb, Index,
Middle

—"3 jaw chuck"

Nonprehensile

- Touching
- Feeling
- Pressing down
- Lifting
- Pushing

How is the upper extremity different from the lower?

Don't walk on our hands

 Minimal sensation better than prosthesis

Indications for Amputation

Trauma

-90%

—20-40 y/o males

Indications for Amputations

- Trauma
 - -Acute
 - -Chronic

• Burn

Infection

Indications for Amputations

Peripheral Vascular Disease

- Neurological disorders
 - Brachial plexopathy

Congenital deformities

- Malignant tumors
 - Clear margin

Goals of Amputation Surgery

Preservation of Length

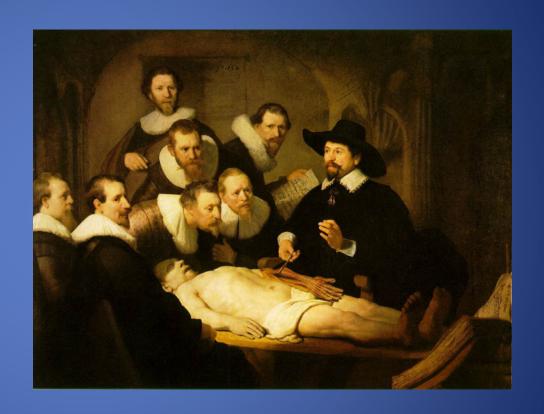
Preservation of useful sensibility

Prevention of symptomatic neuromas

Minimize phantom limb pain

Goals for Amputation Surgery

Prevention of adjacent joint contractures


Early prosthetic fitting

Early return to function

Malignant tumors—restore function while preserving life

General Amputation Principles

- Skin
- Muscle
- Nerves
- Blood Vessels
- Bone

Skin

Painless, pliable, nonadherent scar

Scar placement and prosthetic wear

Coverage:

- —Flap coverage
- -Skin graft

Muscle

- Myofascial closure
 - Minimal muscle stabilization
- Myoplasty
 - Opposing muscle groups
- Myodesis
 - Attached to bone
- Tenodesis
 - Tendon attached to bone

Nerves

Separate from vessels

Pain generator

Traction on nerve and sharply transect

Retracts to safety

Blood Vessels

Suture ligate major vessels

- Full-thickness skin flaps
 - Minimize wound necrosis

- Hemostasis prior to closure
 - Drains

Bone

- Minimize sharp edges
 - Beveling/filing
- Narrow metaphyseal flare/condyles
- Cap intramedullary canal
 - Minimize bleeding
- Minimize periosteal stripping
 - Spurs

Levels of Amputation

Levels of Amputation

- Digit
- Hand
- Radiocarpal/Wrist disarticulation
- Transradial
- Elbow disarticulation
- Transhumeral
- Shoulder disarticulation
- Scapulothoracic disarticulation

Digit

Interphalangeal

- Leave cartilage
- Trim condyles

- Transect tendons and nerves
 - Do not sew tendons together

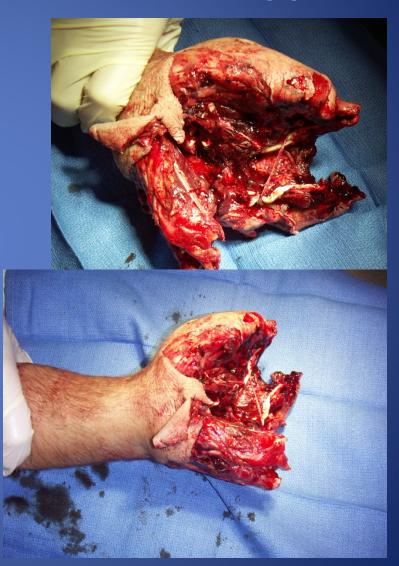
Digit

- DIP amputation
 - Lumbrical plus finger
- Amputation distal to FDS
 - Good function

Proximal to FDS= PIP disarticulation

M 80

Digit


Ray resection

- -Middle Finger
- -Ring Finger

M 100

Basic Hand

- -Thumb
- At least one finger
- -Weak pinch
- -Minimal grasp

Tripod pinch

- Two ulnar fingers
- -Thumb
- Improved grip
- Grasp large objects

Reconstruct

Toe transplants

- Dominant hand
 - Index/middle finger position
 - Fine pinching
- Non-dominant
 - Ring/little finger
 - Pulp to pulp pinch

Partial Hand Problems

- Nail deformity
 - Ablate germinal matrix and skin graft

- Quadriga
 - FDP scar together
 - Limited excursion of unaffected fingers
 - Release adherence

Radiocarpal/Wrist Disarticulation

- Maintains forearm pronation/supination
- Longer lever arm

- Palmar : dorsal flaps
 - -2:1

DRUJ maintained

Radiocarpal/Wrist Disarticulation

 DRUJ not reconstructable, consider transradial amputation

Shape radial and ulnar styloids

 Tendons transected and stabilized under physiologic tension

Transradial

Preserve length

- Supination/pronation
- Stronger lever arm
- Myodesis deep compartments
- Myoplasty superficial compartments
- Maintain long head of biceps for elbow flexion

Transradial

- Biceps removed
 - Resect radius
 - Attach to ulna to maintain elbow flexion
 - 4-5cm ulna needed for prosthesis

- Unequal bone length
 - Maintain lever arm
 - Create "one bone" forearm

Transradial

~1/3 require revision surgery

- Bulbous/flabby residual limbs
 - Revise

- Elbow contracture
 - Release
 - Fusion

Case Example

41y/o smoker s/p MCC

- Intubated for ~1 week
- ORIF of BBFA
- Woke up w/o sensation or use of hand and wrist
- Likely compartment syndrome
- Nonunion repair x2
- c/o burning extremity

Case Example

PMH:

- Depression
- alcoholism
- Lack of sensation
- Wrist and finger contractures
- Active bicep function
- Liability

Plan:

- Hardware removal
- Transradial amputation

Elbow Disarticulation

Controversy

Vs. long trans-humeral

Prosthesis

- Enhanced suspension and rotational control
- External hinge poor cosmesis

Elbow Disarticulation Technique

Longer posterior flap

Biceps and triceps attached at physiological length

Transhumeral

- Preserve length
- Preserve deltoid insertion

Short transhumeral functionally similar to shoulder disarticulation

- Better cosmesis
- Better prosthetic suspension

Transhumeral

Short transhumeral

- Abduction contracture
- Consider arthrodesis

Transhumeral

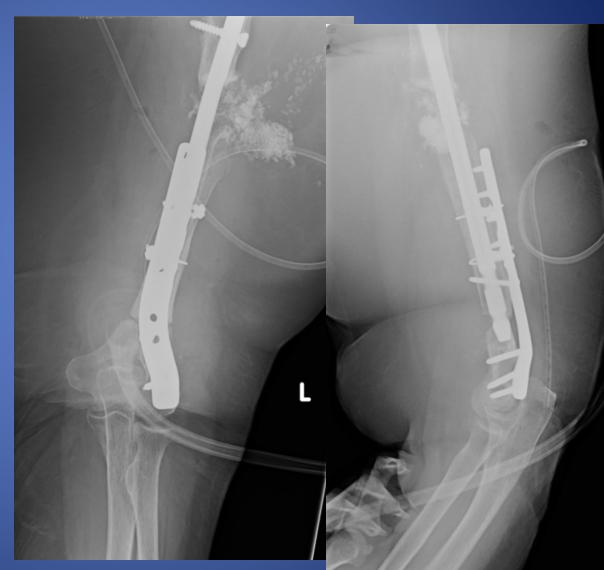
Technique

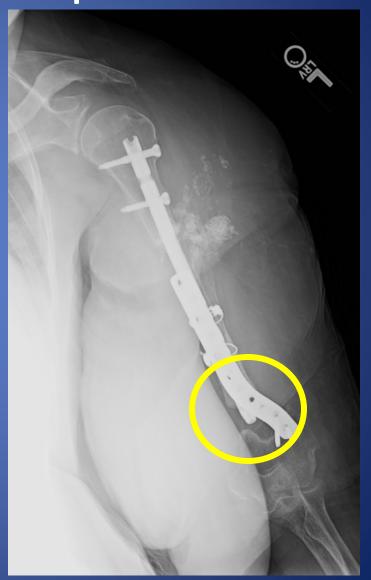
- Long posterior flap
- Angular osteotomy considered for prosthetic wear
- Triceps over bone
- Myodese triceps and biceps
- Surgical neck level = shoulder arthrodesis

Case Example

- 59y/o s/p fall 1995
- Nonop humeral shaft
- 1997 nonunion repaired with IM nail proximal locking bolts only
- 1998 nonunion repair with distal locking bolts and bone graft
- s/p fall May 2009 with new fracture

Case Example

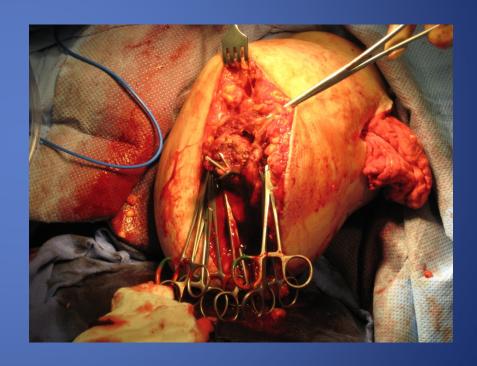

- Morbid Obesity BMI
 47.2 s/p gastric bypass
- NIDDM
- COPD, on home O2
- CAD s/p CABG
- Depression


Case Example

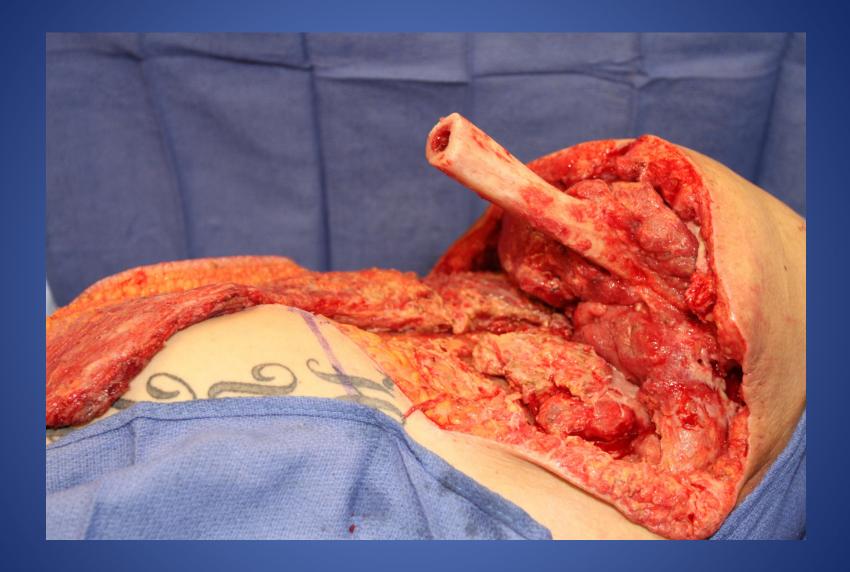
- Nonunion repair
- Shortening
- Plating & BMP

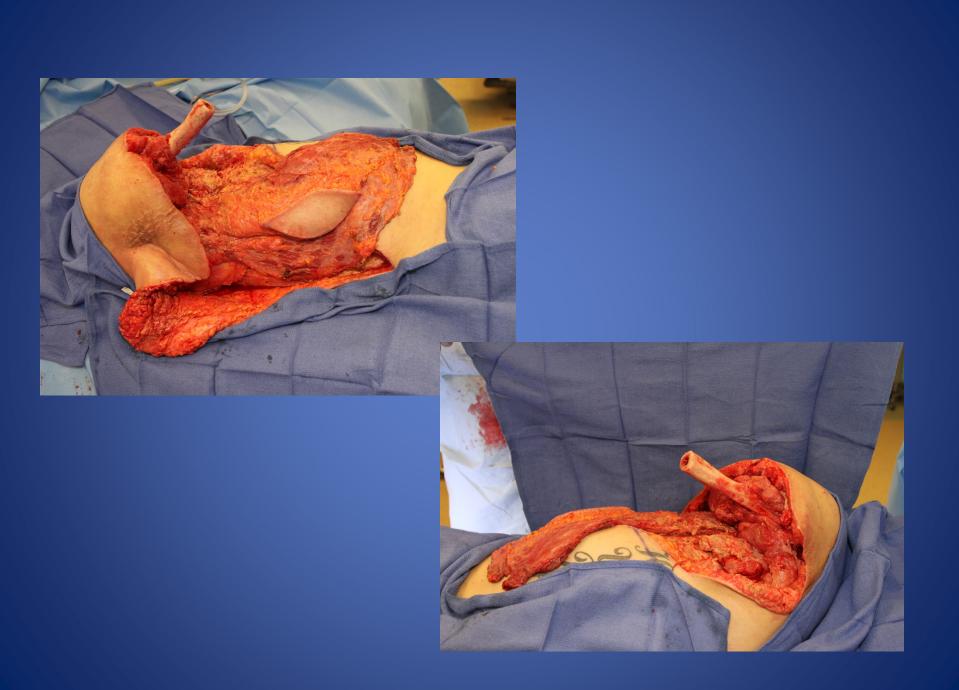
6 Weeks Postop

Options


- Revision nonunion repairvs.
- -Transhumeral amputation through nonunion

- Considerations
 - Co-morbidities
 - Failed previous nonunion repair
 - Limited function





Follow-up

- Joplin, MO
- Working with prosthetist and local physician

Shoulder Disarticulation

- Ultrashort transhumeral = modified disarticulation
 - Deltoid myofasciocutaneous flap
 - Surgical neck osteotomy
 - Latissimus dorsi and pectoralis major reattached

Avoid brachial plexus entrapment

Consider arthrodesis

Shoulder Disarticulation

- Deltoid myofasciocutaneous flap
- Remove proximal humerus
- Avoid brachial plexus entrapment with vessels
- Glenoid fossa filling
 - Rotator cuff muscles
 - Pec major
 - Latissimus dorsi

Scapulothoracic Disarticulation

Indications

- Necrotizing fasciitis
- Malignant tumors
- Severe trauma

- Remove upper extremity, scapula, majority of clavicle
- Significant cosmetic deformity

Scapulothoracic Disarticulation

Anterior or posterior approach

Determines approach to subclavian vessels

Posterior approach potentially less blood loss

- Primary closure unlikely
 - Staged management
 - Soft tissue coverage

Complications

Amputation Site Breakdown

Early

- Delayed wound healing
 - Immunocompromised
 - Malnourished
 - Infection
- -Marginal necrosis
 - Appropriate surgical technique

Amputation Site Breakdown

Late

- Deep infection
 - Usually associated with PVD, DM
- Adherent skin
- —Poor prosthetic fit

Infection

- Debridement
- Antibiotics
- Local wound care
- Secondary healing
 - Prolonged wound healing

Amputation Site Prominence

- Overgrowth
- Bone spur
- Muscle atrophy
- Failed myoplasty/myodesis
- Skin hypertrophy
- Bursitis
- Bulbous/floppy residual limb
 - Poor surgical technique

Amputation Site Prominence

Indications for Revision Amputation

- Poor prosthetic fit
- Limited function
- —Pain
- —Skin at risk

Neurological Complications

Neuroma

Phantom limb pain

Neuroma

All nerve transections form neuromas

- Painful
 - Positive Tinel's

Causes

- Poor surgical technique
- Scar formation
- High pressure area

Neuroma

- Avoid
 - Nerve stump retracts into soft tissue away from scar and prominent areas
- Management
 - Prosthetic adjustment
 - Injection
 - Scar massage
 - Surgical resection

Phantom Limb Pain

May be nonpainful

- Painful
 - -Up to 85% in LE
 - -~40-69% in UE

Phantom Limb Pain

- Surgical
 - Dehydrogenated alcohol and marcaine into epineureum
- Non-surgical
 - Neurontin
 - Shown effective
 - Vitamin C?
 - Regional anesthetics perioperatively?

Joint Contracture

- Usually related to short lever arm
 - Transhumeral
 - Transradial
- Quadriga

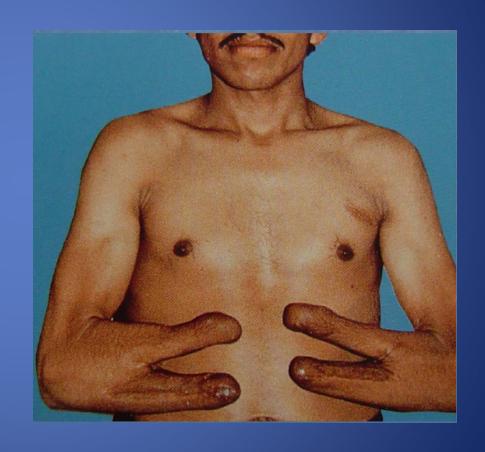
- Avoid with early therapy
- Contracture release and tenolysis may be required if fixed deformity

Heterotopic Ossification/Bone Spur

Associated with:

- Severe trauma
- Excessive manipulation of periosteum
- Residual bone after osteotomy

- May require surgical resection if problematic
 - Recurrence of HO


Special Considerations

Krukenberg Procedure

- 1916 Hermann Krukenberg
 - World War 1
 - Soldiers and civilians
- Sierra Leone civil war
- Transradial amputees
 - Radial and ulnar rays

Indications

- Bilateral transradial amputee and blind
- Unilateral or bilateral
 - Highly motivated
- No access to prosthesis

Contraindications

- < 2y/o
- Elderly dependent
- Unable to accept appearance
- Elbow contracture
- Residual limb <10cm in adult
 - Poor pincer function

Technique

- Ulnar and radial muscles divided
- Interosseus membrane released 12cm from the proposed bone ends
- 18-20 cm distal to elbow crease
 - Radius and ulna equal lengths
- Myodesis radius and ulna
- STSG preferred over muscle debulking
- Postop web management crucial

Krukenberg Procedure

- Create a pincer
- Allows independent function
- Doesn't preclude prosthetic use

Replantation

Indications

Children

—Any level

Adults

- —Above wrist level
 - Significant metabolic risk

Indications for Digits

- Multiple
- —Through palm
- Near wrist
- -Thumb
- Children
- Single digit distal to FDS insertion
- Single digit in professional

Contraindications

- Associated life-threatening disease
- Medical co-morbidities—PVD
- Severe crush or avulsion injury
- Gross contamination
- Multiple level injury
- Excessive delay in treatment

Outcomes for Digits

- 80-90% survival all levels
- Major factors
 - Age of patient
 - Experience of surgeon
- Early reoperation
 - Vascular occlusion up to 40%
 - Up to almost 50% survive

Outcomes

- Postoperative hemorrhage
 - Up to 50%
- Sensation
 - Nearly all have protective sensation
 - Cold intolerance
- Nonunion and malunion
 - **-<5**%
- Secondary surgery
 - Joint contracture release/tenolysis

Replantation

Above digit level

- -Adults
- —<25% regain functional use</p>
- –Sensation present and some residual function = better than prosthesis

Composite Tissue Allograft Transplantation

Hand Transplant

- 59 successful (41 patients)
- Composite tissue (vrs. Solid organ)
- Kidney tansplant protocol
- Direct Visualization/Biopsy
- Morbidity/Ethics
 - Infection/Malignancy/DM/CAD/HTN/Renal
- Bone Marrow Cell Chimerism
 - Tolerance
 - Low dose Immunosuppression

Summary

Upper extremity amputations above the digit are rare

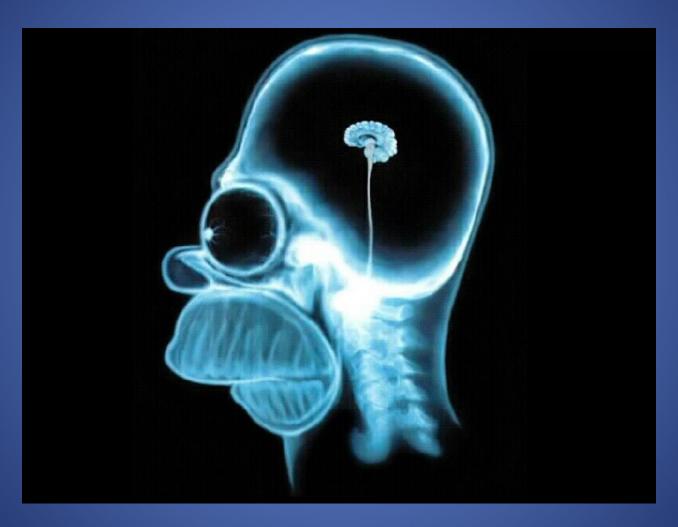
Trauma accounts for 90% of all UE amputations

Summary

- Restoring function is important
 - Reconstruction
 - Prosthesis

Preserve length and joint motion

Avoid complications


Final Thoughts

Sensation is key

Be careful when using a table saw

 No matter how fun it seems, don't hold a lit firework

Questions?

References

- 1. Smith DG, Michael JW, Bowker JH, American Academy of Orthopaedic Surgeons. *Atlas of amputations and limb deficiencies : surgical, prosthetic, and rehabilitation principles*. 3rd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2004.
- 2. Atroshi I, Rosberg HE. Epidemiology of amputations and severe injuries of the hand. *Hand Clin*. Aug 2001;17(3):343-350, vii.
- 3. del Pinal F. Severe mutilating injuries to the hand: guidelines for organizing the chaos. *J Plast Reconstr Aesthet Surg.* 2007;60(7):816-827.
- 4. Leit ME, Tomaino MM. Principles of limb salvage surgery of the upper extremity. *Hand Clin*. May 2004;20(2):v, 167-179.
- 5. Tamurian RM, Gutow AP. Amputations of the hand and upper extremity in the management of malignant tumors. *Hand Clin.* May 2004;20(2):vi, 213-220.