Upper Limb Prosthetics Prescription Writing & Rehab Program

> Heikki Uustal, MD JFK-Johnson Rehab Institute Edison, NJ

Prescription Writing Issues to Consider

• Vocational Activities Manual labor vs. office work Indoors vs. outdoors Moisture, electrical, impact exposure Avocational Activities Homemaker, childcare Indoor hobbies / crafts **Outdoor** activities Sports and fitness

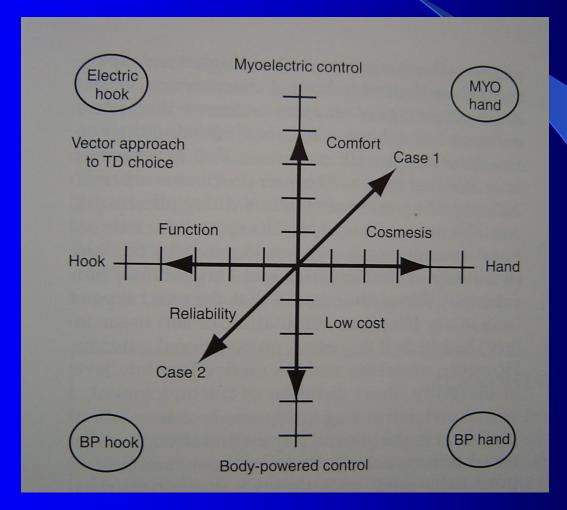
Prescription Writing Issues to Consider

Insurance coverage and limitations **Pre-approval process** Annual limitations, # of devices **Preferred** providers Personal Resources **Personal savings Fund-raising** Legal settlement

Prescription Writing Issues to Consider

Limb Related

Level of amputation Associated injuries **Proximal muscle strength** Contra-lateral limb intact? Can pt. don/doff Pain or tenderness to palpation Skin related Adequate soft tissue coverage Skin graft or scarring Shape


Upper Limb Prosthetic Prescription

NAME:		DOB:	PRACTITIONER:		
REFERRING M.D.:			PRESCRIBING M.D.:		
DIAGNOSIS:		AMPU	TATION TYPE:		
			NOSIS:		
CONSTRUCTION/TYPE	OF PROSTHESIS.	Endostalatal	Excelolatel		
			Wrist Disarticulation	Partial Hand	
OVE ELBOW/SHOULDER	BELOW ELB	ow	HARNESS:	WRIST UNIT:	
DISARTICULATION	SOCKET:	<u></u>	Figure Hight:	Friction;	
CKET:	Test Socket:		Figure Nine:	Internal:	
est Socket:	Double Wall:		Chest Strap:	External:	
houlder Cap:	Triple Wall:		Fixed Cross:	Quick Disconnect:	
ouble Wall:	Supra Condylar:	-	O Ring:	Flexion Unit:	
exible Socket:	Flexible Socket:		Waist Belt:	Electric Wrist Rotator:	
igid Frame:	Rigid Frame:		Shoulder Saddle:		
action:	Split:		CONTROL SYSTEM:	TERMINAL DEVICE:	
	Suction:		Body Powered:	Passive Mitt:	
NOW DISARTICULATION	ELBOW HINGE:		Single:	Cosmetic Hand:	
KET:	Flexible:		Dual:	Hook	
elf Suspending:	Single Axis:		Excursion Amplifier:	Hand:	
ULDER JOINT:	Polycentric:		Externally Powered:	Voluntary Opening:	
niversal(Flexion/Abduction):	Step Up:		Pull Switch:	Voluntary Closing:	
xed:	Other:		Myoelectric:	Greifer:	
			Single Site:	Steeper:	
OW UNIT:	CUFF:		Dual Site:	Protective Glove:	
ssive Friction:	Triceps Cuff:		Button Switch:	Other:	
temal Lock:	Tricep Pad:		Proportional Control:	MISCELLANEOUS:	
sternal Lock:			Other:	Stump Socks:	
anual Lock:				Sheaths:	
udge Control:					
exion Spring Assist:				LINERS:	
sternal Power:				Soft Foam:	
Utah:				Silicone:	
Boston:				Custom:	
ther:				Pre-Fah:	
cial Features/Instructions:					
above prescribed devices are a medic	al annuality to formation the	patient's safety and f	unetional status		

Prosthetic Prescription General Considerations

- Functional or cosmetic prosthesis
- Cable powered or myo-electric
- Hybrid design
- Socket design and interface material
- Endo or exoskeletal design
- Shoulder, elbow, wrist joints
- Terminal devices (hook, hand, specialty)
- Protective cover/skin

Component Vector Diagram

Hook or Hand

- Hook is more durable, more functional, lighter, cheaper, but cosmetically less desirable
- Hand is more lifelike
- Specialty terminal devices may be very useful for a specific task, but look very robotic

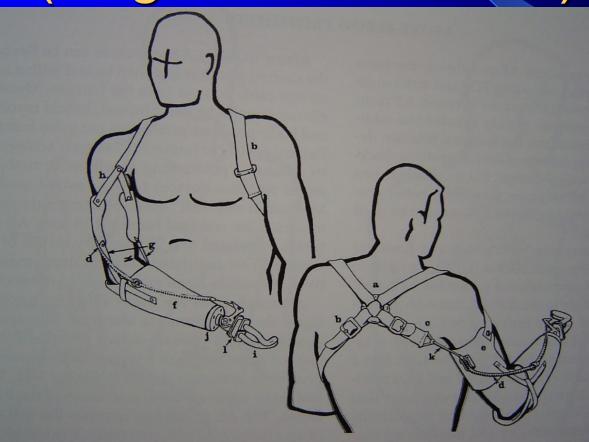
Control Options

- Cosmetic prosthesis has only passive positioning of joints or hand
- Cable-powered prosthesis uses proximal body movements to position elbow and open hook or hand
- Myo-electric prosthesis uses surface electrodes to detect voluntary muscle activity in residual limb to activate elbow/TD
- Switch control can also be used if no muscles are available

Myo-electric Control Systems

• Myo-electric control- Advantages No harness required **Better cosmesis** Less muscle strength needed **Disadvantages:** More expensive Heavier More maintenance needed

Cable-power Control Systems

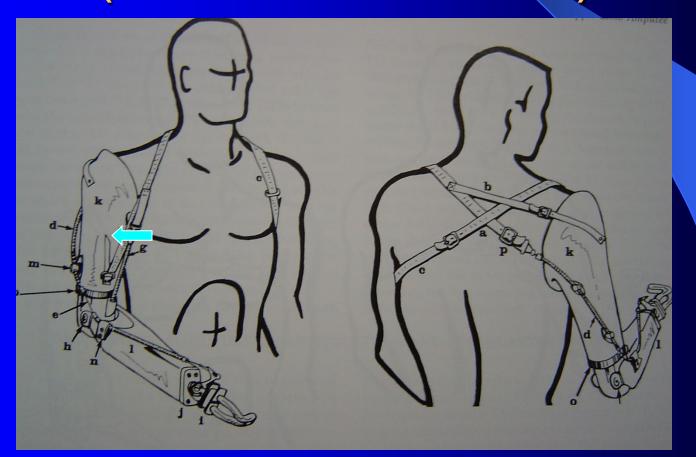

• Cable power- Advantages

- Lighter weight
- Less expensive
- More durable
- Better feedback

Disadvantages:

- Harnessing required
- Less cosmetic

Figure-8 Harness on Trans-radial amputation (single control cable)


Single Control Cable Prosthesis (video)

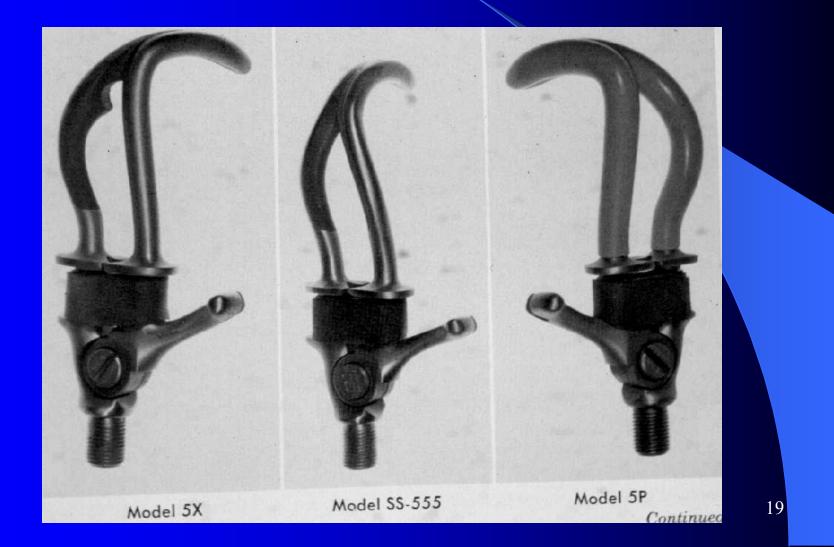
Body Movements for Single Control Cable (below elbow and wrist)

Forward humeral flexion
Bi-scapular abduction (protraction)

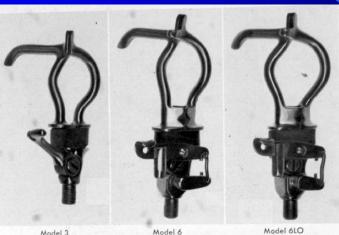
Figure-8 Harness on Transhumeral Prosthesis (dual control cable)

Control Features at Elbow or Above (2 cable)

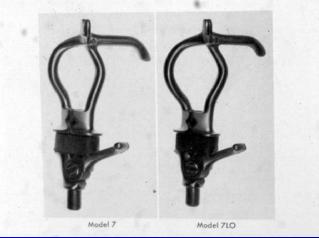
- Two control cables needed
- First control cable flexes elbow
- Second control cable locks elbow
- First control cable now can open TD
- Very difficult to go back and reposition elbow once object is grasped

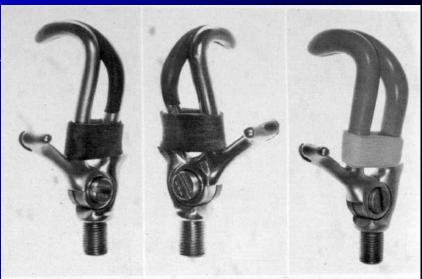

Elbow Locking Body Movements (second control cable)

Shoulder depression
Shoulder extension
Shoulder abduction

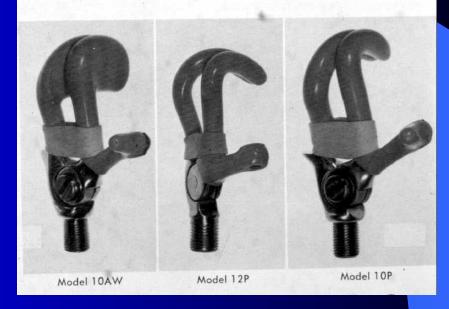

• "DOWN, BACK, and OUT"

Terminal Devices


#5 Hooks – Most Common

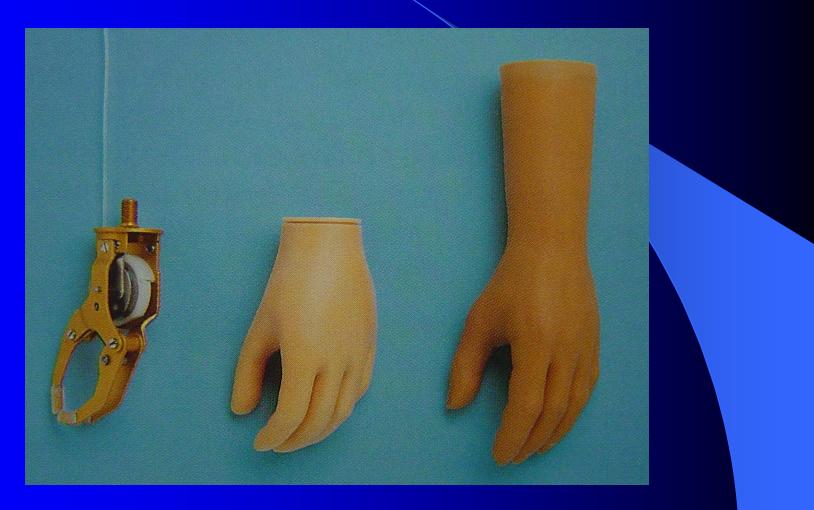

#6-7 Workers Hooks

Model 6 Model 3


Small Adult and Child Size Hooks #9-12

Model 99X

Model 10X


Model 99P


Waterproof Electric Hook

Mechanical Hand

Pediatric Electric Hand

Electronic Hand with limited individual finger control

Greifer Terminal Device

Recreational Terminal Devices

Specialized Functional Terminal Devices

Wrist Disarticulation Options

- Control system- cable or myo-electric
- Socket design soft interface?, rigid frame
- Suspension suction, strap, harness (figure-9)
- Thin wrist unit
- Terminal device hook, hand, robotic, specialty

Trans-radial Options

- Control system- cable or myo
- Socket design single wall, double wall
- Suction suspension
 - Wet fit into hard socket Gel liner
- Harness suspension
 - Figure 9 (long)

- Figure 8 (short)
- Flexible elbow hinge to triceps cuff
- Wrist units
 - Friction, quick disconnect, flexion

Elbow Disarticulation Options

- Control system cable, myo, or hybrid
- Socket design-single wall, soft interface?
- Suction suspension or self-suspending
- Harness suspension figure 8
- External elbow joints
- Forearm shell
- Wrist unit
- Terminal device

Transhumeral Options

- Control system myo, cable, hybrid
- Socket design- interface, single/double
- Suction suspension (gel liner or wet fit)
- Harness suspension Figure 8, shoulder saddle, cross-chest strap
- Mechanical elbow joints (internal locking)
- Turntable for internal/external rotation
- Electric elbow joints

Utah, Liberty, Otto Bock, others

• Wrist unit and terminal device

Shoulder Disarticulation Options

- Cosmetic vs. functional prosthesis
- Socket designs (cosmetic, myo, hybrid)
- Harness designs (figure-8, cross-chest)
- Electric control options
 - Myo-electric, switches, transducers
- Shoulder joints passive friction or locking
- Elbow joints and turntable
- Wrist units
- Terminal devices

Upper Limb Amputation Rehab Program

 Pre-prosthetic – limb shaping, strengthening, ROM, independent ADL's, de-sensitizing, scar/burn management, pain control
 Prosthetic training – don/doff device, basic skills, advanced skills
 Psychological assessment - limb loss and

return to community activities

Pre-prosthetic Program (1)

- Limb shaping with ace-wrap or shrinker
- Wound care and healing issues
- Strengthening of residual limb muscles for possible myo-electric control (bio-feedback)
- Strengthening of proximal muscles at elbow, shoulder, contra-lateral limb
- AROM at pronation/supination, elbow, glenohumeral, scapulo-thoracic joints

Pre-prosthetic Program (2)

- Independent toileting, dressing, bathing, feeding with adaptive devices
- Desensitizing of residual limb with tapping, rubbing, compression
- Scar management with deep friction massage
- Control of surgical pain and phantom pain
- Re-assurance that phantom sensation is normal
- Education regarding prosthetic fitting and training

When do we make the prosthesis?

- Cast for first prosthesis when wound healing is nearly complete and residual limb shape is cylindrical (2-4 weeks ideally)
- Expect to replace socket as residual limb continues to mature and shape (3-6 months)
- Most patients will get 2 prostheses in the first year, often with different control systems

Upper Limb Amputation Prosthetic Training Time

Below Elbow

outpatient PT/OT 3/wk for 4-8 weeks

Above Elbow

outpatient PT/OT 3/wk for 6-12 weeks may be longer for advanced skills

 Shoulder Disartic and Bilaterals therapy program depends on device

Rehab Program **Functional Task Training** Basic skills Don and doff prosthetic device independently Operate terminal device at all levels Grasp objects of various sizes Assist in self-care (toileting, dressing, feeding) Advanced skills Manipulate objects with prosthesis Bimanual tasks (fine motor skills) Return to work, driving, avocational activities

- Basic controls
 - 1. Open and close TD
 - 2. Pre-position TD
 - 3. Control wrist unit
 - 4. Lock/unlock elbow
 - 5. Rotate turntable

- Eating skills
 - 1. Handle spoon and fork
 - 2. Cut with knife
 - 3. Fill cup, drink from cup
 - 4. Open containers
 - 5. Prepare and eat sandwich
 - 6. Butter toast
 - 7. Carry tray

- Dressing skills (don/doff)
 - 1. Undergarments
 - 2. Shirt/blouse
 - 3. Trousers/skirt
 - 4. Socks/shoes
 - 5. Zipper/belt
 - 6. Tuck in shirt
 - 7. Coat

Personal hygiene
1. Hold washcloth
2. Comb hair
3. Brush teeth
4. Clip nails

5. Toileting

- Other activities
 - 1. Writing on paper
 - 2. Open jar, envelope, doors
 - 3. Dial telephone
 - 4. Turn switches, knobs
 - 5. Meal preparation
 - 6. Manage wallet and money

Rehab Program Special Issues

- Driving (spinner knob, crossovers, electronic controls)
- Swimming (prosthesis with folding fin)
- Sports (special terminal devices)
- Cosmetic covers

Upper Limb Amputation Lifetime Management

- Initial check-out for fit and function
- Follow-up every 4 weeks during training
- Follow-up every 3 months first year
- Follow-up every 6 months lifetime

Thank You