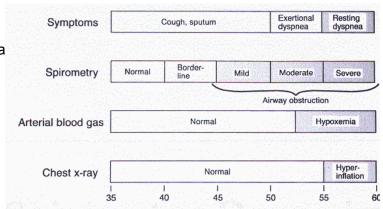
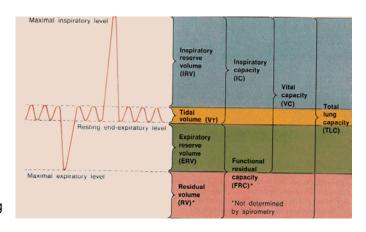
PULMONARY FUNCTION TESTS


Pulmonary Function Tests:

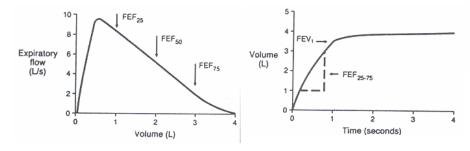
(Maher K. Tabba MD, MS)

- Spirometry
- Lung Volumes
- Diffusion Capacity
- Maximal Voluntary Ventilation (MVV)
- Maximal Inspiratory Pressure (Pi max)
- Maximal Expiratory Pressure (Pe max)
- Arterial Blood Gas (ABG)
- Walking Oxymetry
- Bronchochallenge Tests


INDICATIONS:

- □ Pulmonary Evaluation:
 - Presence of impairment
 - Type of Pulmonary dysfunction
 - Quantification of impairment in known disea
 - Monitor the progression of known disease
 - Monitor the treatment response of known disease
- Preoperative Assessment:
 - Estimate the risk for postoperative complications (operability)
 - Tolerance for lung resection (resectability)
- Disability Evaluation

LUNG VOLUMES & CAPACITIES:


- □ **Tidal Volume (VT):**The volume of air entering the nose or mouth per breath (500 ml).
- □ **Residual Volume (RV):** The volume of air left in the lungs after a maximal forced expiration (1.5L).
- □ **Expiratory Reserve Volume (ERV):** The volume of air that is expelled from the lung during a maximal forced expiration that starts at the end of normal tidal expiration (1.5L).
- □ Inspiratory Reserve Volume (IRV): The volume of air that is inhaled into the lung during a maximal forced inspiration starting at the end of a normal tidal inspiration (2.5L).
- □ Functional Residual Capacity (FRC): the volume of air remaining in the lungs at the end of a normal tidal expiration (3 L).
- □ Inspiratory Capacity (IC): The volume of air that is inhaled into the lung during a maximal forced inspiration effort that begins at the end of a normal tidal expiration (VT+IRV=3L).
- □ **Vital Capacity (VC):** The volume of air that is expelled from the lung during a maximal forced expiration effort starting after a maximal forced inspiration (4.5L).
- □ **Total Lung Capacity (TLC):** The volume of air that is inhaled into the lung after a maximal inspiration effort (5-6 L).

Spirometry:

Measures the lung volume change during forced breathing maneuvers:

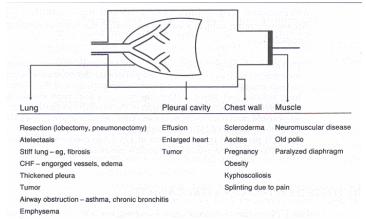
- □ Forced vital capacity (FVC)
- Forced expiratory volume in the first second (FEV-1)

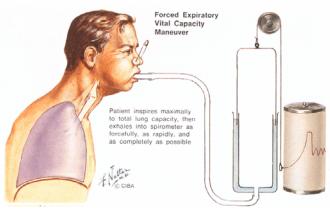
Spirometry	Obstruction	Restriction
FEV-1	Decreased ()	Decreased (-)
FVC	Decreased (-)	Decreased (-)
FEV-1/FVC	Decreased (definition)	Normal & Increased

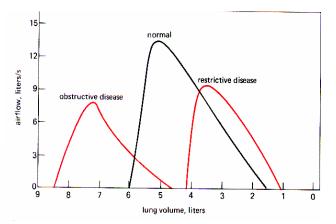
COPD STAGING

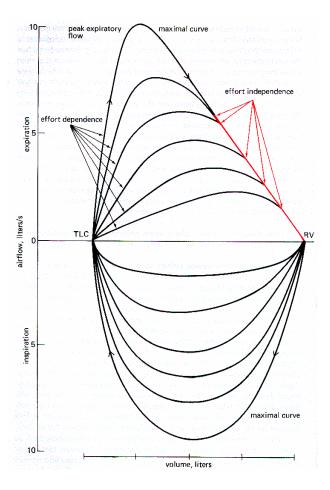
Stage I	Stage II	Stage III
Mild	Moderate	Severe
(FEV₁ ≥50%)	(FEV ₁ 49%-35%)	(FEV ₁ <35%)

American Thoracic Society Guideline


Stage 0	Stage I	Stage IIA	Stage IIB	Stage III
At Risk	Mild	Moderate	Moderate	Severe
(FEV ₁ Normal)	(FEV₁ ≥80%)	(FEV ₁ 79%-50%)	(FEV ₁ 49%-30%)	(FEV ₁ <30%)


Global Initiative for Chronic Obstructed Lung Disease (GOLD) Guideline


Obstructive Lung Diseases:


- Emphysema & Chronic Bronchitis
- Cystic Fibrosis
- □ Asthma
- Bronchiectasis
- □ Some Interstitial Lung Disease: (combined)

Restrictive Lung Diseases:

Pre and Post Bronchodilator Spirometry:

- Goal: to evaluate the reversibility of the airway obstruction.
- □ Technique : repeat the spirometry after the treatment with bronchodilator.
- □ Criteria: required two criteria at the same time:

200 ml and 12% (both) change in either FEV-1 or FVC

- Patient with Reversible Airway Obstruction responds to treatment with:
 - · Bronchodilator (short & long acting)
 - · Steroid inhaler

Spirometry:

- Detects the obstructive lesions in the major airways.
- Characterizes the lesion:

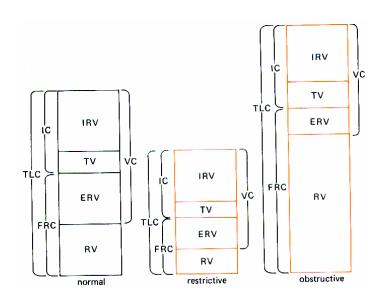
<u>A-Location</u> of the lesion:

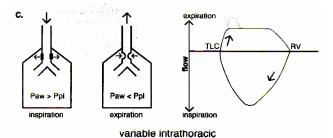
- · Intrathoracic
- Extrathoracic

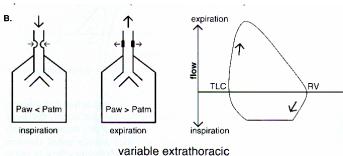
<u>**B-Behavior**</u> of the lesion during rapid inspiration a expiration:

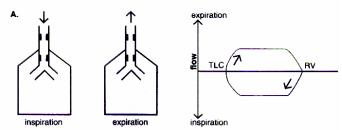
- Fixed
- Variable
- Variable Intrathoracic Lesion:

Examples: Tracheomalacia & Intratracheal tumor.

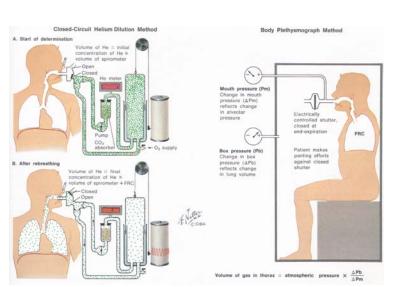

❖ Variable Extrathoracic Lesion:


Examples: Vocal cord paralysis, Goiter, and Tumor


Intra or Extrathoracic Fixed Lesion:


Examples: Tracheal stenosis & surgical stricture, and compressing mass.

Lung Volumes:



fixed (intra- or extrathoracic)

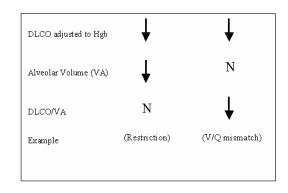
Diffusion Capacity:

Estimates the transfer of oxygen in the alveolar air to the red blood cell. Factors that influence the diffusion:

- 1) Area of the alveolar-capillary membrane (A)
- 2) Thickness of the membrane (T)
- 3) Driving pressure
- 4) Hemoglobin

A-Decreased:

- 1) Decrease the <u>area</u> of the diffusion: Lung/lobar resection, bronchial obstruction, and IPF.
- 2) Increase the <u>thickness</u> of the alveolar-capillary membrane: IPF, CHF, pulmonary vascular diseases
- 3) Decrease the *driving pressure*: smoking, CO exposure
- 4) Hemoglobin: Anemia, Hemoglobinopathy.


B-Increased:

- Pulmonary hemorrhage
- Polycythemia
- Early CHF
- Asthma
- Exercise
- Obesity
- Left to right shunt

Alveolar gas Blood plasma Red blood cell Partial pressure difference Resistance 1/Dm 1/e/6

Technique:

- He or CH4 to measure the alveolar volume (VA)
- CO to measure the diffusion capacity (DLCO)
- DLCO
- DLCO corrected to Hgb (DLCO corr Hgb)*
- DLCO corrected to CO
- Alveolar Volume
- DLCO adjusted to the alveolar volume (DLCO/VA)*

Walking Oxymetry:

Goal: detects the hidden diffusion defect.

Technique: check O2 saturation at rest, 4 mins and 6 mins walk.

- Walking Oxygen Desaturation:
 - 1. Diffusion defect.
 - 2. V/Q mismatch
 - 3. Shunt
- □ Criteria for Oxygen Supplementation (Home Oxygen):
 - 1. PO2 <55 or Oxygen Saturation <88%
 - 2. PO2 <59 with:Pulmonary Hypertension or Polycythemia

Maximal Voluntary Ventilation (MVV):

Measures the ventilatory reserve

The subject breaths as hard and fast as possible for 10-15 sec, and then adjust it to 1 min.

MVV = FEV-1 times 35-40

Decreases:

- Poor effort
- Neuromuscular diseases
- Obstructive & restrictive lung diseases
- ·Heart diseases
- Obesity

Maximal Inspiratory Pressure (Pi max) & Maximal Expiratory Pressure (Pe max):

Goal: To measure the strength of the respiratory muscles.

Technique: the amount of pressure the subject can generate in:

Deep inspiration (inspiratory muscles): (Pimax)
Deep expiration (expiratory muscles): Pemax

Normal value: Pimax (-60) & Pemax (+120) cm H2O

Indications:

- Neuromuscular diseases
- □ Unexplained decrease in VC & MVV

Weaning (Pimax > -30)

Arterial Blood Gas:

- Oxygenation (PO2 and FiO2) & Ventilation (PCO2 and PH)
- □ Acid Base balance (PCO2, HCO2, and PH)

Bronchochallenge Tests:

Goal: evaluate the airway hyperresponsivness (asthma). Technique: Methacholine, Histamine, Cold, Exercise...etc.

Criteria: 20% decrease in baseline FEV-1

Types of PFT:

- □ Evaluate Lung Mechanics:
 - Volume
 - Flow
 - Resistance
 - Compliance
 - Airway Hyperractivity
- □ Evaluate Respiratory Muscles:
 - Maximal Voluntary Ventilation (MVV)
 - Maximal Inspiratory Pressure (Pi max)
 - Maximal Expiratory Pressure (Pe max)
 - Seating & Supine Spirometry
- □ Evaluate Gas Exchange:
 - PO2 & alveolar-arterial oxygen pressure difference
 - Physiologic dead space ventilation
 - Diffusion capacity

Interpreting PFT:

General Approach to Interpretation:

- A. Is the test interpretable? "garbage in, garbage out".
- B. Are the results normal?
- C. What are the pattern and severity of abnormality?
- D. What does this mean for this patient?

General Information:

- □ Age & Sex
- □ Weight
- Diagnosis
- □ The patient's effort during the test
- □ Does the study meet the ATS criteria (Acceptability & Reproducibility)

Pulmonary Functions:

- □ Spirometry:
 - FEV-1/FVC ratio
 - FEV-1 & FVC
 - Flow-Volume loop
 - MVV & Pimax or Pemax
- □ Lung volumes: (TLC, RV, RV/TLC ratio)
- □ Diffusion Capacity: (DLCO corr Hgb, DLCO/VA).
- □ Arterial Blood Gas
- Comparison with previous study

Abnormal Pulmonary Function Patterns:

- 1. Obstructive
- 2. Restrictive
- 3. Neuromuscular weakness
- 4. Pulmonary Vascular
- 5. Poor Effort