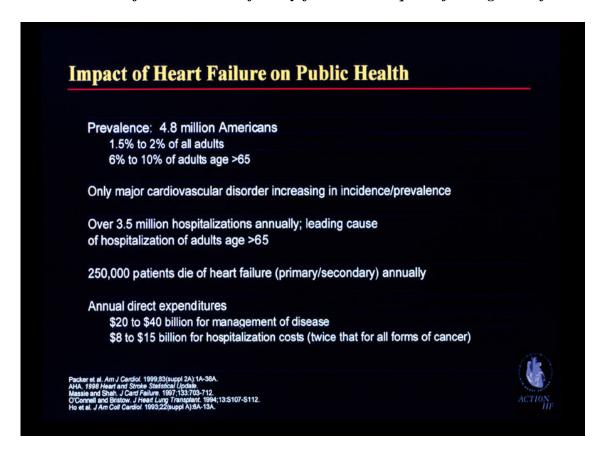
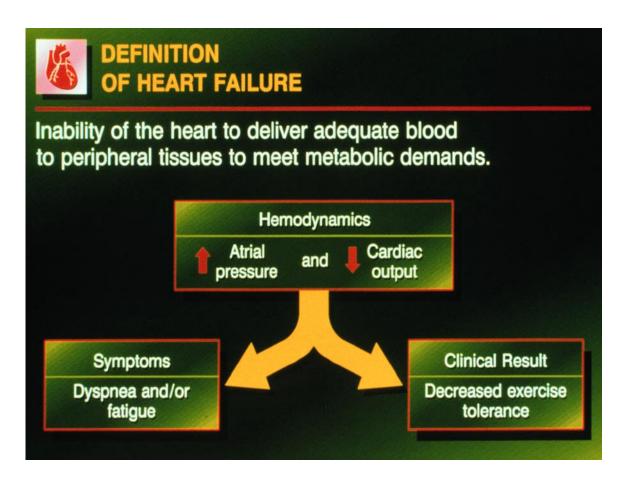
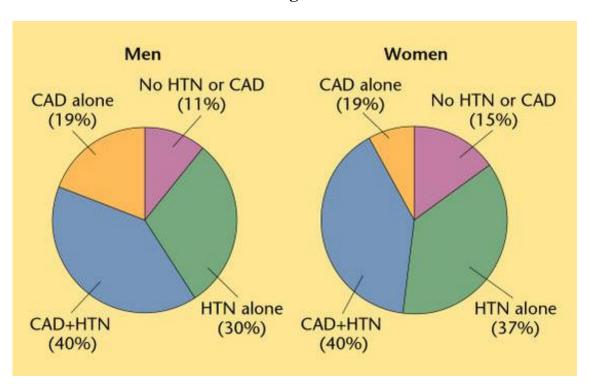
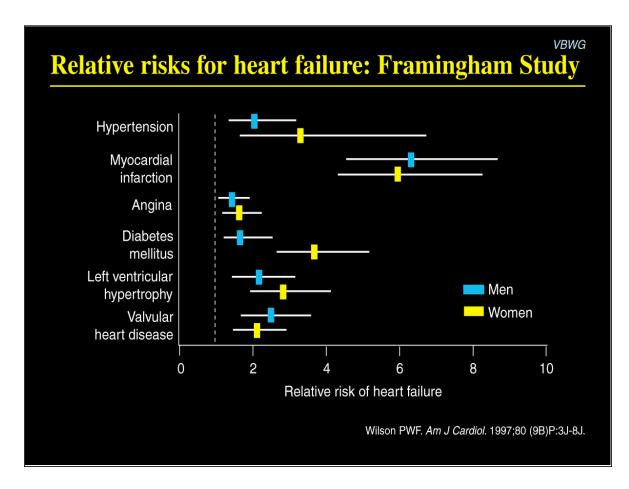
Congestive Heart Failure

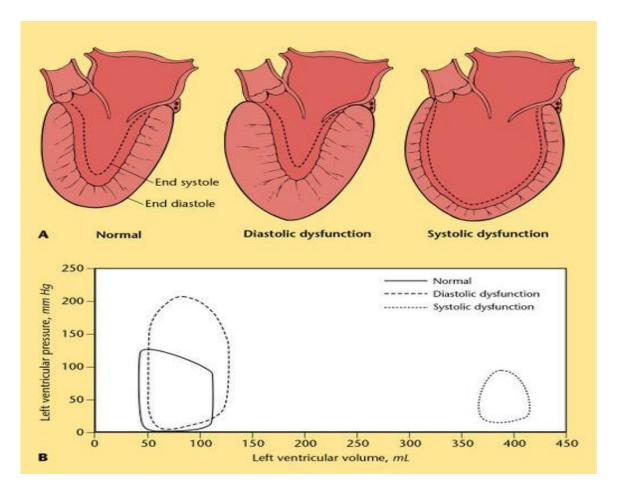

Lokesh Tejwani, MD


Heart Failure

"A patho-physiological state in which abnormality of cardiac function is responsible for failure of the heart to pump blood at a rate commensurate with the metabolic requirements or to do so only with elevated filling pressures"


"CHF is a clinical syndrome in which heart failure is accompanied by symptoms and signs of pulmonary and/or peripheral congestion"

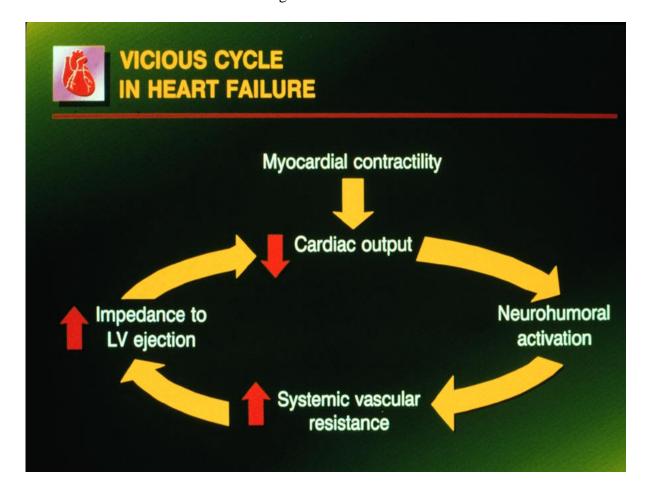

Should objective evidence of LV dysfunction be required for diagnosis of CHF?



Clinical features: congestive heart failure in USA

Normal contraction: systolic and diastolic dysfunction

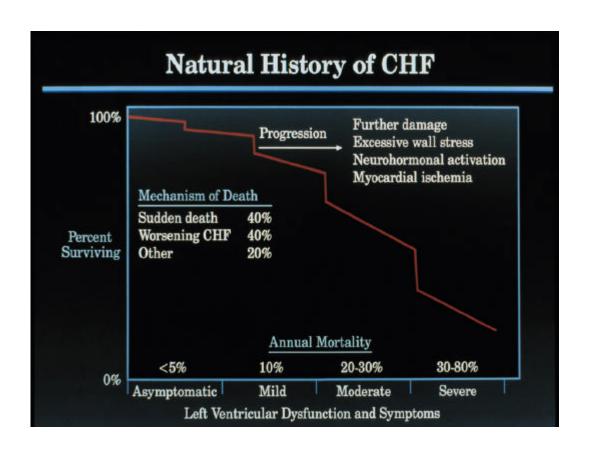
Pathology of Heart Failure

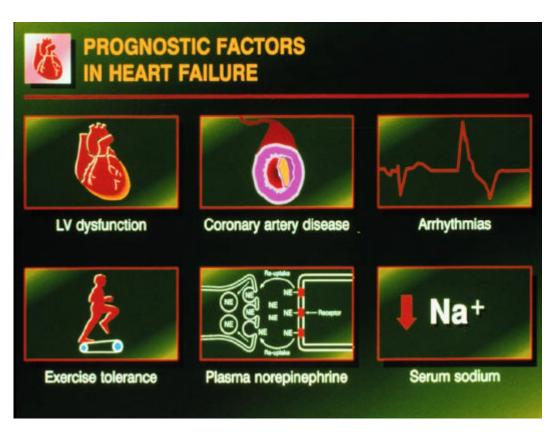

Systolic D	ysfunction
Causative Factor	Example
Loss of muscle	Myocardial infarction
Pressure overload	Hypertension
Volume overload	Valvular regurgitation
Decreased contractility	Dilated cardiomyopathy

Peripheral changes in Heart Failure

- Increased systemic vascular resistance
- Venoconstriction
- Decreased baroreceptor responsiveness
- Decreased glomerular filtration rate
- Increased arterial venous O₂ difference
- Peripheral edema

Compensatory Mechanisms that can overshoot


- Increased systemic vascular resitance
- Excess tachycardia
- Excess fluid retention
- Excess catecholamine secretion
- Excess rennin-angiotensin



Prognosis in Heart Failure

- In people diagnosed with heart failure, sudden death occurs at 6 to
 9 times the rate of the general population
- 5-year mortality rate is 50%
- Median survival following onset is 1.7 years for men and 3.2 years for women

American Heart Association. 2001 Heart and Stroke Statistical Update. Dallas, TX.: American Heart Association, 2000; Ho KKL et al. JACC. 1993;22:6A-13A.

New York Heart Association Functional Classification

- I. No limitations of physical activity, no symptoms wish ordinary activities
- II. Mild/slight limitation, symptoms with ordinary activities
- III. Moderate/marked limitation, symptoms with less than ordinary activities
- IV. Severe limitation, symptoms of heart failure at rest

Symptoms: Dyspnea or fatigue

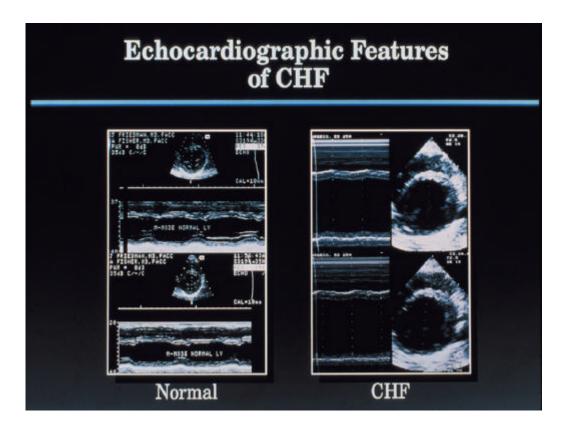
Adapted from Criteria Committee of the New York Heart Association, 1994.

Diagnosis of Heart Failure

Signs of Physical Exam – General

- Decrease in blood pressure
- Tachycardia
- Cardiomegaly
- Cool extremities

Signs of Physical Exam –Left Heart Failure


- Rales
- Pleural effusion
- Decreased pulse pressure
- Pulsus alternans
- Abnormal apical impulse
- Decreased heart sounds
- Apical S3
- Mitral regurgitation

Signs of Physical Exam – Right Heart Failure

- Elevated jugular venous pressure
- Hepatojugular reflux
- Hepatomegaly
- Peripheral edema
- Pleural effusion
- Ascites
- Right-sided S3
- Tricuspid regurgitation

Initial Testing: Rule Out Alternative Diagnoses

- CBC (anemia, systemic illness)
- Chemistries (renal or hepatic dysfunction, diabetes)
- Urinalysis (renal disease, nephritic syndrome)
- Thyroid function tests (especially in AF, elderly)
- Arterial O₂ saturation
- ECG
- Chest X ray
- Measurement of LV function (usually echocardiogram)

BNP

- BNP is a 32 amino acid peptide.
- It is released in response to strech and increased volume in the ventricles.
- Rapid, point of care assay for BNP now available.
- It is helpful in Diagnosis, assessment of severity and prediction of prognosis of CHF patients.

Physiologic Effects of the RAAS and NPS

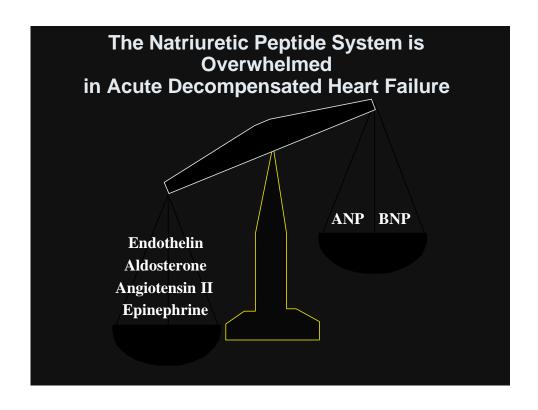
RAAS (Renin-Angiotensin Aldosterone System)

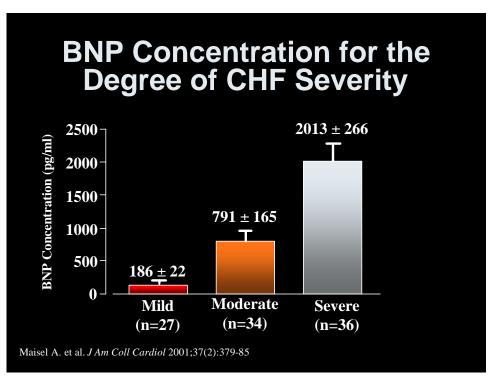
Activation of AT1 receptors Vasoconstriction by angiotensin II Sodium retention

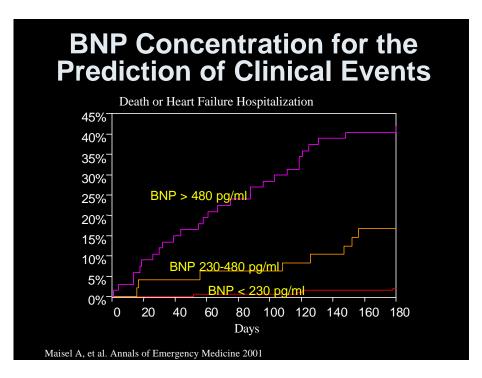
Increased aldosterone release Increased cellular growth

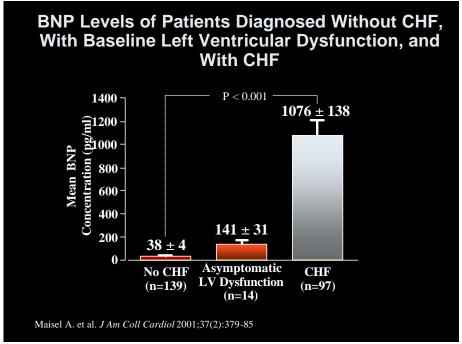
Increased sympathetic nervous activity

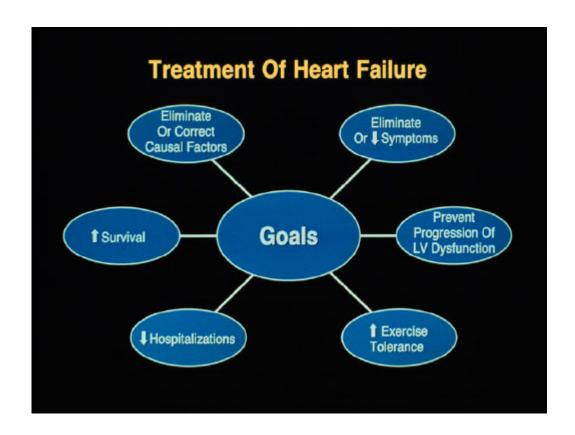
NPS (Natriuretic Peptide System)

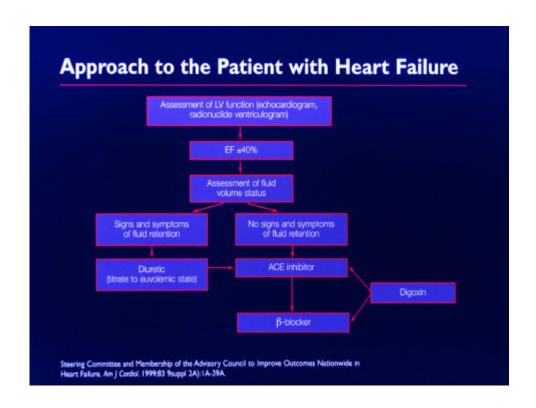

ANP, BNP Sodium excretion

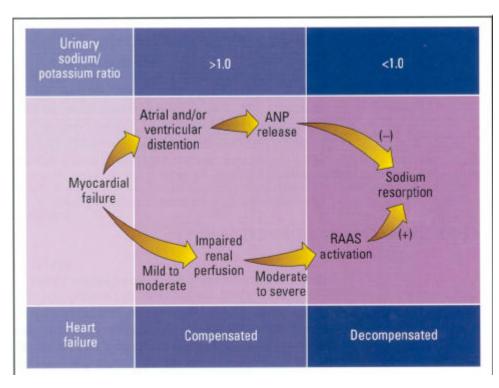

Vasodilation


Decreased aldosterone levels


Inhibition of RAAS


Inhibition of sympathetic nervous activity

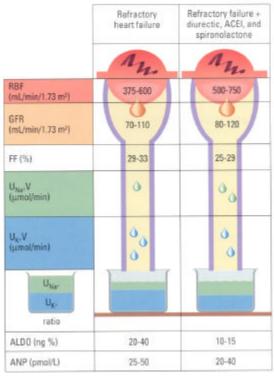


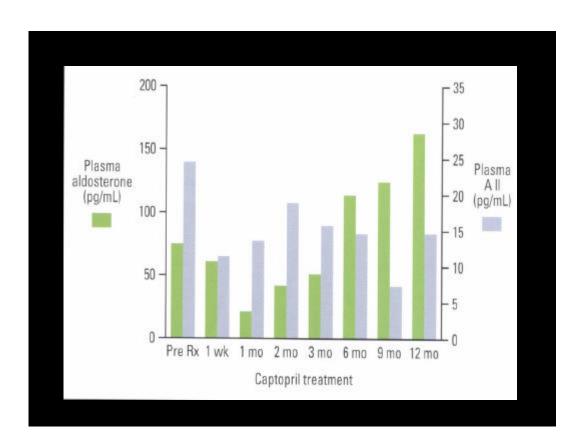


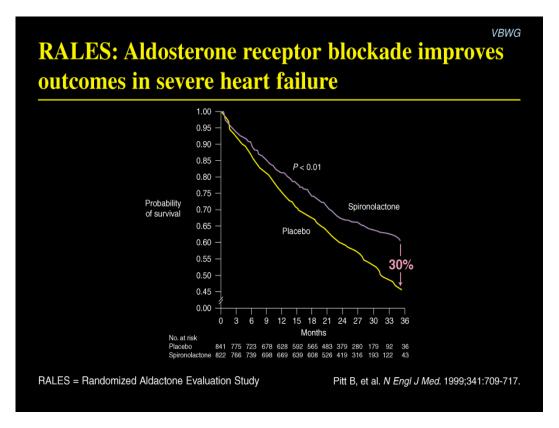
General Measures for the Management of Heart Failure

Decrease risk of new cardiac injury	Smoking cessation; weight reduction in obese patients; control? BP, lipids, diabetes; Discontinue alcohol use
Maintain fluid balance	Moderate salt restriction (= 3 grams daily); Daily weight measurement
Improve physical conditioning	Moderate exercise to prevent physical deconditioning
Avoid	Antiarrhythmic agents to suppress asymptomatic ventricular arrhythmias, Most calcium antagonists, NSAIDs

Steering committee and Membership of the Advisory Council to Improve Outcomes Nationwide in heart Failure. Am j Cardio. 1999: 83 (Suppl 2A):1A-39A.





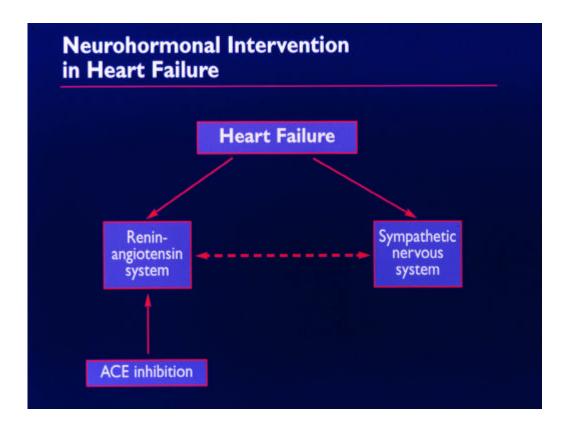

	Normal	Compensated (early) heart failure	Decompensated (late) heart failure
	14.	14.	14.
RBF (mL/min/1.73 m²)	750-1200	600-1000	375-600
GFR (mL/min/1.73 m²)	90-140	90-140	70-110
FF (%)	17-21	23-27	29-33
U _{Ner} V (µmol/min)	00	00	٥
U _X .V (µmal/min)	0	0	00
U _{Ka} ,			
ALDO (ng %)	8-12	8-12	20-40
ANP (pmol/L)	5-10	15-30	25-50

Late heart failure + loop diuretic	Late heart failure + ACE inhibitor
14.	Au.
400-700	500-750
75-115	80-120
27-31	25-29
٥	00
00	0
20-30	10-15
20-40	20-40

Diuretic therapy in CHF Diuretic Therapy in CHF First line therapy in symptomatic CHF Proximal Tubul Produce most rapid symptomatic Glomerulus benefit Cortex Need not be limited to loop diuretics Activate neurohormonal responses Induce potassium and magnesium Loop Diureties Medulla loss Collecting Ducts Loop of Henle

Diuretics: Recommendations

Generally prescribed for all patients with heart failure and past or present history of fluid retention


Should not be used as monotherapy even if symptoms of heart failure are controlled and if patient's clinical status is stabilized

Should generally be combined with ACE inhibitor and β-blocker

Ultimate goal is to reduce symptoms and eliminate signs of fluid retention through continued treatment

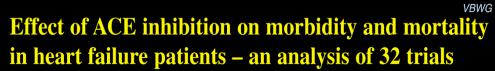
Daily measurement of patient's weight provides guide to drug dosage and Efficacy

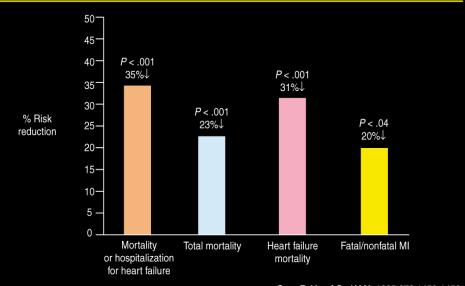
Packer et al. Am J Cardio 1999: 83 (Suppl 2A): 1A-38A

ACE Inhibition: Effect on Renal Function

ACE inhibition reduces angiotension II

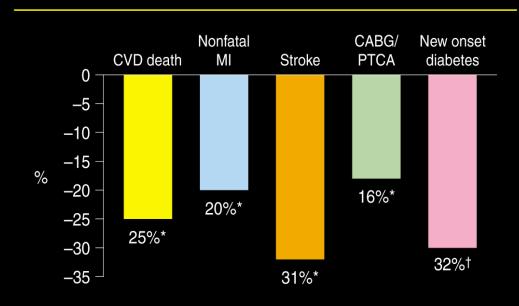
Efferent arterial vasoconstriction reversed


GFR reduced



Filtration of BUN and serum creatinine reduced

BUN and serum creatininte levels increase



Garg R, Yusuf S. *JAMA*. 1995;273:1450-1456.

VBWG

HOPE: Risk reduction with ACE inhibition

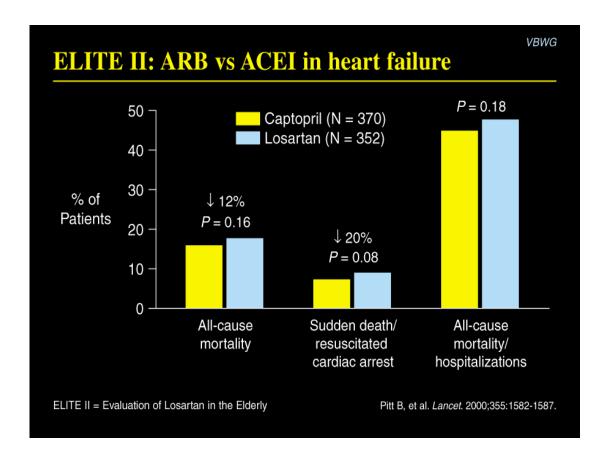
 $^*P < .001$ $^*P = .002$

HOPE Study Investigators. N Engl J Med. 2000;342:145-153.

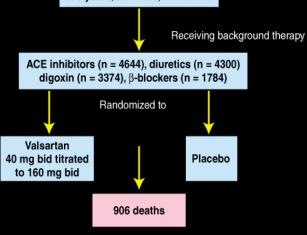
ACE Inhibitors: Recommendations

Use for all patients with heart failure caused by LV systolic dysfunction (with/without HF symptoms) unless contraindicated

Use with diuretics inpatients with present or past history of fluid retention

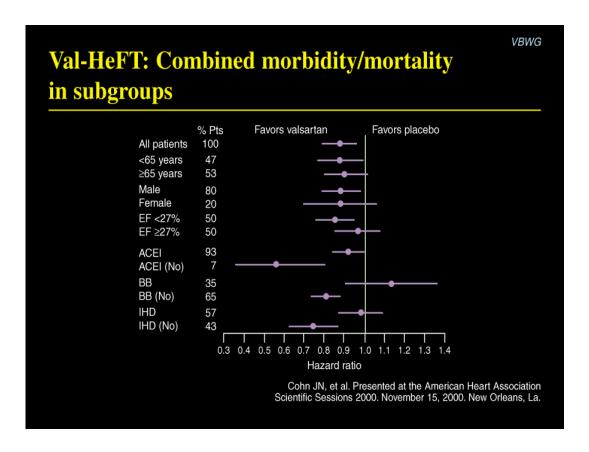

Use for long-term management, not for stabilizing acutely-ill patients

Initiate at very low doses, followed by gradual dose increments as tolerated


Assess renal function and serum potassium periodically

Packer et al. Am J Cardio 1999: 83 (Suppl 2A): 1A-38A

Principal mechanism of action	ARBs	ACE-I
A-II vasoconstriction	\downarrow	\downarrow
Plasma A-II	\uparrow	\downarrow
Plasma renin activity	\uparrow	\uparrow
Aldosterone	\downarrow	\downarrow
Bradykinin	_	\uparrow
Prostaglandin E, and prostacyclin	_	\uparrow
Nitric oxide release	_	↑
Uric acid levels	$\downarrow \uparrow$	_
Cough	Not observed	Class specific



Val-HeFT: ARB vs usual therapy in heart failure — study overview 5010 patients ≥18 years; EF <40%; NYHA II-IV

Val-HeFT = Valsartan in Heart Failure Trial

Cohn JN, et al. Presented at the American Heart Association Scientific Sessions 2000. November 15, 2000. New Orleans, La.

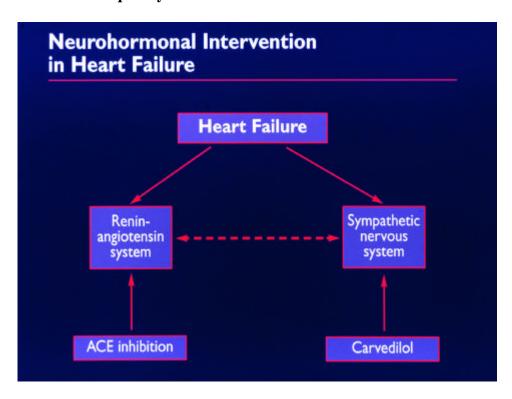
ACE inhibitors vs ARBs in heart failure: Clinical summary

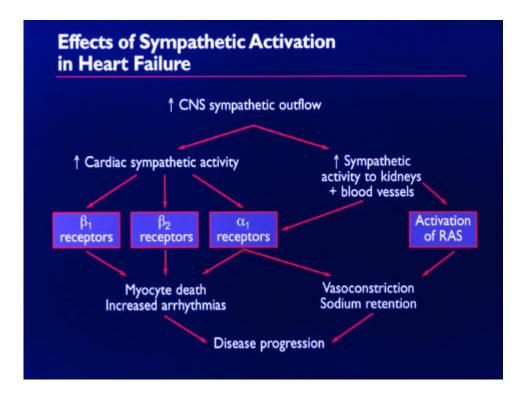
- Ace inhibitors: Remain the first choice for treatment of patients with heart failure
- Angiotensen receptor blockers: Consider as an alternative for patients who cannot tolerate ACE inhibitors, or as adjunctive therapy with ACE inhibitors
- For patients taking both ACE inhibitors and β-blockers the addition of an ARB has no benefit and may be contraindicated

Jamli AH, et al. Arch Int Med 2001; 161:667-672. Cohn JN et al. Presented at the American Heart Assoc. Scientific Sessions 2000. November 15, 2000, New Orleans, LA

Digitalis: Use in Clinical Practice and Recommendations

Digoxin alleviates symptoms and improves clinical status, thus decreasing risk of hospitalization, but has little or no effect on survival.


Recommendations: Use to improve clinical status of patients with heart failure due to LV systolic dysfunction.


Use with diuretic, ACE inhibitor, and β-blockers.

Packer et al. Am J Cardio 1999: 83 (Suppl 2A): 1A-38A Digitalis Investigation Group. N Engl J Med 1997; 336:525-533

Direct Vasodilator Therapy in CHF

- Improve LV performance by reducing afterload and preload
- Increase cardiac output and reduce LVFP
- Hydralazine + isosorbide dinitrate prolongs survival
- Produce only limited symptomatic improvement
- Activate neurohormonal response
- Frequently associated with tolerance and side effects

B-Adrenergic Receptor Blockers

B-Blockers primarily inhibit effects of sympathetic nervous system

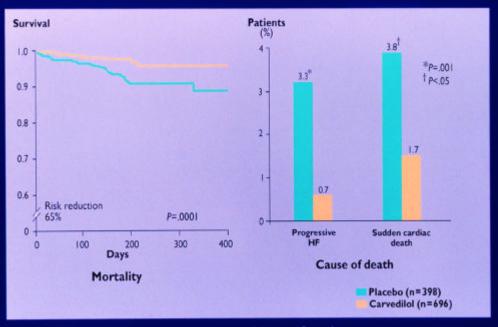
Deleterious effects of sympathetic nervous system are mediated through actions on β_1 -, β_2 -, and α_1 -adrenergic receptors

Three types of \(\mathbb{B} \)-Blockers; those that:

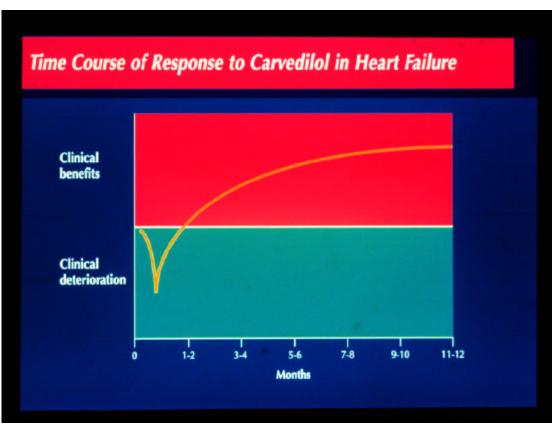
- Selectively inhibit β-adrenergic receptors (eg,metoprolol and bisoprolol)
- Inhibits both β_1 and β_2 -adrenergic receptors (eg, propranolol and bucindolol)
- Inhibit β_1 and β_2 and α_1 -adrenergic receptors (eg, carvedilo)

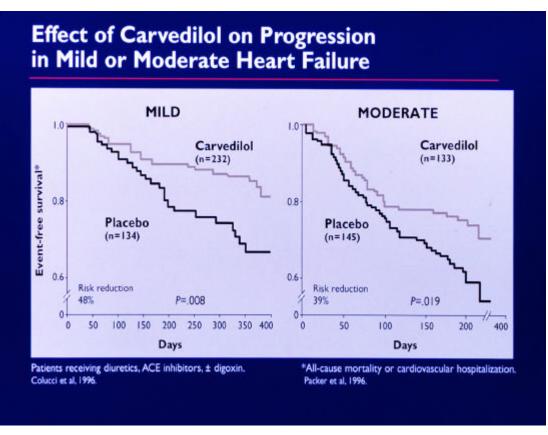
Carvedilol is the only \(\beta \)-blocker approved by the FDA for management of chronic heart failure.

Packer et al. Am J Cardio 1999: 83 (Suppl 2A): 1A-38A

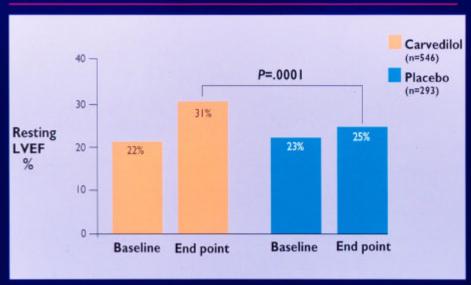

VRWG

β -blockers in heart failure: Key clinical trials

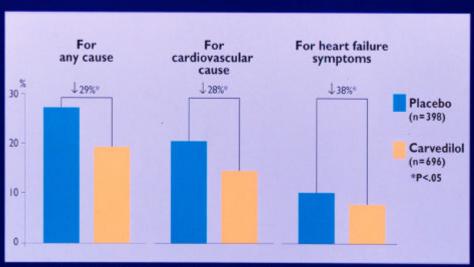

Trial	Drug	Target daily dose	Risk reduction/ total mortality
US Carvedilol (n = 1094)	Carvedilol	50-100 mg	65% (<i>P</i> < 0.001)
MERIT-HF (n = 3718)	Metoprolol	200 mg	34% (P = 0.0062)
CIBIS II (n = 2647)	Bisoprolol	10 mg	33% (<i>P</i> < 0.0001)


Smith AJ, et al. Am J Health Syst Pharm. 2001;58:140-145.

Mortality in US Carvedilol Heart Failure Program



Patients receiving diuretics, ACE inhibitors, ± digoxin; mean follow-up 6.5 months. Adapted from Packer et al., 1996.



Data from 4 US double-blind placebo-controlled trials; mean follow-up 6.5 months. Patients receiving diuretics, ACE inhibitors, ± digoxin.

Effect of Carvedilol on Hospitalizations in Heart Failure

Patients receiving diuretics, ACE inhibitors, ± digoxin; mean follow-up 6.5 months. Adapted from Fowler et al, 1996.

	α-Blockade	β-Blockade	Sympathetic blockade
May cause	Early transient hypotension/dizziness	Slowing of heart rate/AV conduction	Fluid retention/ worsening symptoms
Incidence* Carvedilol Placebo	18%	4.0% 0.5%	5.0% 4.0%
Withdrawal* Carvedilol Placebo	0.1% 0	0.4% 0	0.9% 0
Management	Adjust ACEI timing [#]	Adjust carvedilol dose†	Increase diuretic dose [†]

B-Blockade: Recommendations

Use for all patients with stable NYHA Class II or III heart failure due to LV systolic dysfunction unless contraindicated

Use with diuretic and ACE inhibitors; endure that patients are not fluid-overloaded

Use for long-term management, not for stabilizing acutely-ill patients

Initiate at very low doses, followed by gradual dose increments as tolerated

Monitor patients for hypotension, bradycardia, and fluid retention during uptitration period (85-90% of patients in clinical trials were maintained on long-term therapy)

Aims of heart failure management and therapeutic approaches

To achieve improvement in symptoms

- Diuretics
- Digoxin
- ACE inhibitors

To achieve improvement in survival

- ACE inhibitors
- B-blockers
- Oral nitrates pous hydralazine
- Spironolactone

Davies MK, et al. BMJ 2000; 320:428-431

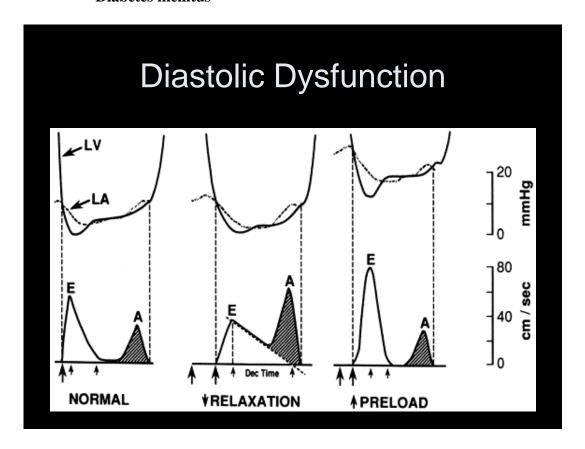
Common Errors in the Management of Heart Failure

- Other conditions and reversible causes not identified or treated
- Heart failure not considered (COPD misdiagnosed)
- LV function not assessed
- Inadequate pharmacologic treatment
- Noncompliance not addressed
- Revascularization not considered
- Inadequate patient education
- Inappropriate monitoring of progress
 - o Testing overutilized
 - o Activity- and symptom-based measures underutilized

Indications for Hospital Management

- Clinical or ECG evidence of acute myocardial ischemia
- Pulmonary edema or severe respiratory distress (O₂ sat <90%)
- Severe complicating medical illness
- Anasarca
- Symptomatic hypotension or syncope
- Failure of outpatient management
- Inadequate home support

Diastolic Heart Failure


Symptoms and signs of CHF Normal LV function Diastolic dysfunction

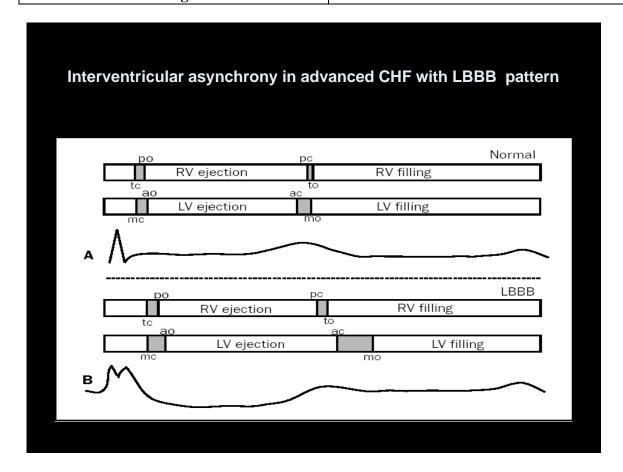
- Syndrome of dyspnea, fatigue and fluid retention in presence of normal LV function (in absence of heart valve disease)
- Disastolic dysfunction; abnormal ventricular distensibility, relaxation or filling regardless of presence or absence of symptoms and normal or abnormal LV function
- Prevalence: 15% of CHF patients <65 yrs.
 50% of patients with CHF >80 yrs.

Causes of Left Ventricular Diastolic Dysfunction

- Left ventricular hypertrophy:
 - Hypertensive heart disease
 - o Aortic stenosis
- Ischemic heart disease

- Cardiomyopathy
 - o Hypertrophic cardiomyopathy
 - o Infiltrative cardiomyopahty amyloidosis, sarcoidosis, hemochromatosis
- Pericardial disease: constrictive pericarditis effusion with tamponade
- Diabetes mellitus

Diastolic Heart Failure: Treatment Goals and Methods


- Reduce the congestive state
 Salt restriction and diuretics
 ACE inhibitors or angiotensin receptor blockers
 Dialysis or plasmaphoresis
- Control hypertension and promote regression of LVH Antihypertensive agents
- Prevent and treat myocardial ischemia Nitrates, beta blockers, calcium blockers
 Bypass surgery, angioplasty

- Prevent tachycardia
 Beta-blockers, calcium blockers
 Ablation of AV node and pacing
- Maintain atrial contraction (Sinus rhythm)

Antiarrhythmic agents

P Improve LV relaxation
Beta adrenergic stimulation
Systolic unloading
Treat ischemia
Calcium-blockers (in hypertrophic cardiomyopathy)

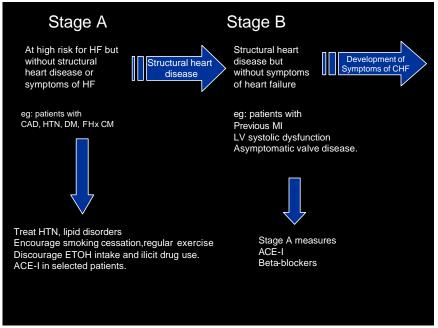
- Prevent fibrosis and promote regression of fibrosis
 ACE inhibitors or angiotensin receptor blockers
 Spironolactone
 Anti-ischemic agents
- Attenuate neurohormonal activation Beta-blockers, ACE inhibitors

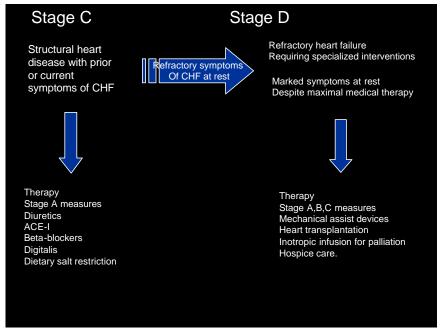
Consequences of LBBB

Mechanical:

- Interventricular dyssynchrony
- Prolonged delay between onset of LV and RV contraction
- Relative decrease in the duration of LV diastole
- Prolonged IVRT, Shortened LV filling period
- Intraventricular dyssynchrony
- Paradoxical septal motion with decreased regional ejection fraction
- Inhomogenous, discoordinate LV contraction.

Hemodynamic:


Reduced LVEF / CO / MAP / dP/dt


Surgical treatment for heart failure

- Heart transplant (including xenotransplantation)
- Corornary artery bypass surgery
- Left ventricular restoration
- Mitral valve repair / replacement
- Left ventricular assist devices
- Abiocor artificial hearts

Other non-surgical measures:

- Biventricular pacing
- Intermittent inotropic infusions

